Atlas and Anatomy of PET/MRI View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2022-02-04

AUTHORS

Vanessa Murad , E. Edmund Kim , Jin-Chul Paeng , Hyung-Jun Im , Gi-Jeong Cheon

ABSTRACT

Hybrid positron emission tomography/magnetic resonance image (PET/MRI) has undergone rapid evolution during the last years, moving from a predominantly research field to clinical practice. With the advances in faster silicon photomultiplier detectors, MRI-based attenuation correction, and image reconstruction, significant improvements in equipment and image quality have been achieved. Currently, there are fully integrated PET/MRI systems that allow simultaneous and more rapid acquisition, improving not only the technical quality but also the experience for patients who need a low radiation dose [1–3]. With this technology comes the possibility of performing multiparametric MRI studies, where detailed anatomical evaluation and functional evaluation are possible, not only considering the qualitative and quantitative data of PET but also integrating multiple parameters such as perfusion (contrast-enhanced sequences), cellularity (diffusion-weighted sequence), metabolites (spectroscopic analysis), and texture analysis. Additionally, recent developments are very promising in giving the possibility of incorporating advanced data and biomarkers to integrate with bioinformatics and allow a better understanding of the disease, as well as an efficient evaluation, prediction of response to treatment, and follow-up [4–7]. More... »

PAGES

1-52

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-92349-5_1

DOI

http://dx.doi.org/10.1007/978-3-030-92349-5_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1145275272


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Diagnostic Imaging, Fundacion Santa Fe de Bogot\u00e1 University Hospital, Bogota, Colombia", 
          "id": "http://www.grid.ac/institutes/grid.418089.c", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea", 
            "Department of Diagnostic Imaging, Fundacion Santa Fe de Bogot\u00e1 University Hospital, Bogota, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murad", 
        "givenName": "Vanessa", 
        "id": "sg:person.011464021327.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011464021327.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine and Department of Molecular Medicine, Graduate School of Convergence Science and Technology, Seoul National University College of Medicine, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiological Sciences, University of California, Irvine, School of Medicine, Orange, CA, USA", 
            "Department of Nuclear Medicine and Department of Molecular Medicine, Graduate School of Convergence Science and Technology, Seoul National University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "E. Edmund", 
        "id": "sg:person.0656745142.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656745142.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paeng", 
        "givenName": "Jin-Chul", 
        "id": "sg:person.01343511335.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departments of Applied Bioengineering, Molecular Medicine, and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Departments of Applied Bioengineering, Molecular Medicine, and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Im", 
        "givenName": "Hyung-Jun", 
        "id": "sg:person.01310744444.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310744444.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheon", 
        "givenName": "Gi-Jeong", 
        "id": "sg:person.01333472502.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2022-02-04", 
    "datePublishedReg": "2022-02-04", 
    "description": "Hybrid positron emission tomography/magnetic resonance image (PET/MRI) has undergone rapid evolution during the last years, moving from a predominantly research field to clinical practice. With the advances in faster silicon photomultiplier detectors, MRI-based attenuation correction, and image reconstruction, significant improvements in equipment and image quality have been achieved. Currently, there are fully integrated PET/MRI systems that allow simultaneous and more rapid acquisition, improving not only the technical quality but also the experience for patients who need a low radiation dose [1\u20133]. With this technology comes the possibility of performing multiparametric MRI studies, where detailed anatomical evaluation and functional evaluation are possible, not only considering the qualitative and quantitative data of PET but also integrating multiple parameters such as perfusion (contrast-enhanced sequences), cellularity (diffusion-weighted sequence), metabolites (spectroscopic analysis), and texture analysis. Additionally, recent developments are very promising in giving the possibility of incorporating advanced data and biomarkers to integrate with bioinformatics and allow a better understanding of the disease, as well as an efficient evaluation, prediction of response to treatment, and follow-up [4\u20137].", 
    "editor": [
      {
        "familyName": "Kim", 
        "givenName": "E. Edmund", 
        "type": "Person"
      }, 
      {
        "familyName": "Murad", 
        "givenName": "Vanessa", 
        "type": "Person"
      }, 
      {
        "familyName": "Paeng", 
        "givenName": "Jin-Chul", 
        "type": "Person"
      }, 
      {
        "familyName": "Cheon", 
        "givenName": "Gi-Jeong", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-92349-5_1", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-92348-8", 
        "978-3-030-92349-5"
      ], 
      "name": "Atlas and Anatomy of PET/MRI, PET/CT and SPECT/CT", 
      "type": "Book"
    }, 
    "keywords": [
      "silicon photomultiplier detectors", 
      "photomultiplier detector", 
      "PET/MRI systems", 
      "low radiation dose", 
      "image reconstruction", 
      "radiation dose", 
      "attenuation correction", 
      "MRI system", 
      "image quality", 
      "detector", 
      "rapid acquisition", 
      "recent developments", 
      "PET/MRI", 
      "field", 
      "tomography/magnetic resonance images", 
      "research field", 
      "correction", 
      "possibility", 
      "evolution", 
      "parameters", 
      "images", 
      "multiple parameters", 
      "prediction", 
      "advanced data", 
      "reconstruction", 
      "rapid evolution", 
      "system", 
      "last years", 
      "data", 
      "texture analysis", 
      "better understanding", 
      "efficient evaluation", 
      "technology", 
      "magnetic resonance images", 
      "PET", 
      "advances", 
      "resonance images", 
      "dose", 
      "acquisition", 
      "understanding", 
      "significant improvement", 
      "equipment", 
      "bioinformatics", 
      "analysis", 
      "quality", 
      "improvement", 
      "technical quality", 
      "evaluation", 
      "study", 
      "MRI", 
      "quantitative data", 
      "response", 
      "development", 
      "atlas", 
      "experience", 
      "MRI studies", 
      "practice", 
      "years", 
      "treatment", 
      "anatomy", 
      "functional evaluation", 
      "clinical practice", 
      "anatomical evaluation", 
      "multiparametric MRI study", 
      "prediction of response", 
      "detailed anatomical evaluation", 
      "more rapid acquisition", 
      "perfusion", 
      "patients", 
      "cellularity", 
      "disease", 
      "biomarkers", 
      "metabolites"
    ], 
    "name": "Atlas and Anatomy of PET/MRI", 
    "pagination": "1-52", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1145275272"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-92349-5_1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-92349-5_1", 
      "https://app.dimensions.ai/details/publication/pub.1145275272"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_294.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-92349-5_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-92349-5_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-92349-5_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-92349-5_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-92349-5_1'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      22 PREDICATES      97 URIs      90 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-92349-5_1 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N35c20e9709524307a6e00f8fa87f3ef2
4 schema:datePublished 2022-02-04
5 schema:datePublishedReg 2022-02-04
6 schema:description Hybrid positron emission tomography/magnetic resonance image (PET/MRI) has undergone rapid evolution during the last years, moving from a predominantly research field to clinical practice. With the advances in faster silicon photomultiplier detectors, MRI-based attenuation correction, and image reconstruction, significant improvements in equipment and image quality have been achieved. Currently, there are fully integrated PET/MRI systems that allow simultaneous and more rapid acquisition, improving not only the technical quality but also the experience for patients who need a low radiation dose [1–3]. With this technology comes the possibility of performing multiparametric MRI studies, where detailed anatomical evaluation and functional evaluation are possible, not only considering the qualitative and quantitative data of PET but also integrating multiple parameters such as perfusion (contrast-enhanced sequences), cellularity (diffusion-weighted sequence), metabolites (spectroscopic analysis), and texture analysis. Additionally, recent developments are very promising in giving the possibility of incorporating advanced data and biomarkers to integrate with bioinformatics and allow a better understanding of the disease, as well as an efficient evaluation, prediction of response to treatment, and follow-up [4–7].
7 schema:editor N22fcfe8c28db42b198b5ae1bd53c443c
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nea2824ea74e349a0a2901dd2ba901faf
11 schema:keywords MRI
12 MRI studies
13 MRI system
14 PET
15 PET/MRI
16 PET/MRI systems
17 acquisition
18 advanced data
19 advances
20 analysis
21 anatomical evaluation
22 anatomy
23 atlas
24 attenuation correction
25 better understanding
26 bioinformatics
27 biomarkers
28 cellularity
29 clinical practice
30 correction
31 data
32 detailed anatomical evaluation
33 detector
34 development
35 disease
36 dose
37 efficient evaluation
38 equipment
39 evaluation
40 evolution
41 experience
42 field
43 functional evaluation
44 image quality
45 image reconstruction
46 images
47 improvement
48 last years
49 low radiation dose
50 magnetic resonance images
51 metabolites
52 more rapid acquisition
53 multiparametric MRI study
54 multiple parameters
55 parameters
56 patients
57 perfusion
58 photomultiplier detector
59 possibility
60 practice
61 prediction
62 prediction of response
63 quality
64 quantitative data
65 radiation dose
66 rapid acquisition
67 rapid evolution
68 recent developments
69 reconstruction
70 research field
71 resonance images
72 response
73 significant improvement
74 silicon photomultiplier detectors
75 study
76 system
77 technical quality
78 technology
79 texture analysis
80 tomography/magnetic resonance images
81 treatment
82 understanding
83 years
84 schema:name Atlas and Anatomy of PET/MRI
85 schema:pagination 1-52
86 schema:productId Nc55f40a992424b488151a910ed45626e
87 Nccc572fc1b2e4e729ad882309c597488
88 schema:publisher N77a8a9d52acf4844b9c345331c13b855
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145275272
90 https://doi.org/10.1007/978-3-030-92349-5_1
91 schema:sdDatePublished 2022-10-01T06:56
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N7ca6c0761ee148ce8aaa12de473bc7e8
94 schema:url https://doi.org/10.1007/978-3-030-92349-5_1
95 sgo:license sg:explorer/license/
96 sgo:sdDataset chapters
97 rdf:type schema:Chapter
98 N0ed79642d4fe40b9be1d6f627f7ac86c rdf:first Nf612cd49666b4aed97c38f6a272245b1
99 rdf:rest N9b1a874171c2467f9c38e3dcb593c606
100 N185e3c4e6aa24ad2afd7a9fd18b50fca rdf:first sg:person.01310744444.16
101 rdf:rest N43d7c2905c524128a9bc1dd3c62fe6ab
102 N22fcfe8c28db42b198b5ae1bd53c443c rdf:first Nd6d4469e0b3a4c6c872572aa59d5b4cc
103 rdf:rest N57afa326699e49f1b7bba6d358622a49
104 N2bf1599dd5134f3eb72476b56df50b43 schema:familyName Cheon
105 schema:givenName Gi-Jeong
106 rdf:type schema:Person
107 N35c20e9709524307a6e00f8fa87f3ef2 rdf:first sg:person.011464021327.53
108 rdf:rest Nb5a5c1c02d7d48d1aeaf95858d1396a9
109 N43d7c2905c524128a9bc1dd3c62fe6ab rdf:first sg:person.01333472502.31
110 rdf:rest rdf:nil
111 N57afa326699e49f1b7bba6d358622a49 rdf:first N9a3390a1f84546378a87b022c8d4cf54
112 rdf:rest N0ed79642d4fe40b9be1d6f627f7ac86c
113 N6282b34a94dc452ebf1fdd849b820c93 rdf:first sg:person.01343511335.32
114 rdf:rest N185e3c4e6aa24ad2afd7a9fd18b50fca
115 N77a8a9d52acf4844b9c345331c13b855 schema:name Springer Nature
116 rdf:type schema:Organisation
117 N7ca6c0761ee148ce8aaa12de473bc7e8 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 N9a3390a1f84546378a87b022c8d4cf54 schema:familyName Murad
120 schema:givenName Vanessa
121 rdf:type schema:Person
122 N9b1a874171c2467f9c38e3dcb593c606 rdf:first N2bf1599dd5134f3eb72476b56df50b43
123 rdf:rest rdf:nil
124 Nb5a5c1c02d7d48d1aeaf95858d1396a9 rdf:first sg:person.0656745142.66
125 rdf:rest N6282b34a94dc452ebf1fdd849b820c93
126 Nc55f40a992424b488151a910ed45626e schema:name dimensions_id
127 schema:value pub.1145275272
128 rdf:type schema:PropertyValue
129 Nccc572fc1b2e4e729ad882309c597488 schema:name doi
130 schema:value 10.1007/978-3-030-92349-5_1
131 rdf:type schema:PropertyValue
132 Nd6d4469e0b3a4c6c872572aa59d5b4cc schema:familyName Kim
133 schema:givenName E. Edmund
134 rdf:type schema:Person
135 Nea2824ea74e349a0a2901dd2ba901faf schema:isbn 978-3-030-92348-8
136 978-3-030-92349-5
137 schema:name Atlas and Anatomy of PET/MRI, PET/CT and SPECT/CT
138 rdf:type schema:Book
139 Nf612cd49666b4aed97c38f6a272245b1 schema:familyName Paeng
140 schema:givenName Jin-Chul
141 rdf:type schema:Person
142 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
143 schema:name Physical Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
146 schema:name Other Physical Sciences
147 rdf:type schema:DefinedTerm
148 sg:person.011464021327.53 schema:affiliation grid-institutes:grid.418089.c
149 schema:familyName Murad
150 schema:givenName Vanessa
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011464021327.53
152 rdf:type schema:Person
153 sg:person.01310744444.16 schema:affiliation grid-institutes:grid.31501.36
154 schema:familyName Im
155 schema:givenName Hyung-Jun
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310744444.16
157 rdf:type schema:Person
158 sg:person.01333472502.31 schema:affiliation grid-institutes:grid.31501.36
159 schema:familyName Cheon
160 schema:givenName Gi-Jeong
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31
162 rdf:type schema:Person
163 sg:person.01343511335.32 schema:affiliation grid-institutes:grid.31501.36
164 schema:familyName Paeng
165 schema:givenName Jin-Chul
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32
167 rdf:type schema:Person
168 sg:person.0656745142.66 schema:affiliation grid-institutes:grid.31501.36
169 schema:familyName Kim
170 schema:givenName E. Edmund
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656745142.66
172 rdf:type schema:Person
173 grid-institutes:grid.31501.36 schema:alternateName Department of Nuclear Medicine and Department of Molecular Medicine, Graduate School of Convergence Science and Technology, Seoul National University College of Medicine, Seoul, Republic of Korea
174 Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
175 Departments of Applied Bioengineering, Molecular Medicine, and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
176 schema:name Department of Nuclear Medicine and Department of Molecular Medicine, Graduate School of Convergence Science and Technology, Seoul National University College of Medicine, Seoul, Republic of Korea
177 Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
178 Department of Radiological Sciences, University of California, Irvine, School of Medicine, Orange, CA, USA
179 Departments of Applied Bioengineering, Molecular Medicine, and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
180 rdf:type schema:Organization
181 grid-institutes:grid.418089.c schema:alternateName Department of Diagnostic Imaging, Fundacion Santa Fe de Bogotá University Hospital, Bogota, Colombia
182 schema:name Department of Diagnostic Imaging, Fundacion Santa Fe de Bogotá University Hospital, Bogota, Colombia
183 Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...