Ontology type: schema:Chapter
2021
AUTHORSShio Kawakami , Keiki Takadama , Hiroyuki Sato
ABSTRACTThis work proposes a multi-factorial evolutionary algorithm encouraging crossovers among solutions with similar target objective functions and suppressing crossovers among solutions with dissimilar target objective functions. Evolutionary multi-factorial optimization simultaneously optimizes multiple objective functions with a single population, a solution set. Each solution has a target objective function, and sharing solution resources in one population enhances the simultaneous search for multiple objective functions. However, the conventional multi-factorial evolutionary algorithm does not consider similarities among objective functions. As a result, solutions with dissimilar target objectives are crossed, and it deteriorates the search efficiency. The proposed algorithm estimates objective similarities based on search directions of solution subsets with different target objective functions in the design variable space. The proposed algorithm then encourages crossovers among solutions with similar target objectives and suppresses crossovers among solutions with dissimilar objectives. Experimental results using multi-factorial distance minimization problems show the proposed algorithm achieves higher search performance than the conventional evolutionary single-objective optimization and multi-factorial optimization. More... »
PAGES45-60
Bio-Inspired Information and Communications Technologies
ISBN
978-3-030-92162-0
978-3-030-92163-7
http://scigraph.springernature.com/pub.10.1007/978-3-030-92163-7_5
DOIhttp://dx.doi.org/10.1007/978-3-030-92163-7_5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1143576688
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.266298.1",
"name": [
"The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Kawakami",
"givenName": "Shio",
"id": "sg:person.012202401617.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012202401617.02"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.266298.1",
"name": [
"The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Takadama",
"givenName": "Keiki",
"id": "sg:person.012774267611.99",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774267611.99"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.266298.1",
"name": [
"The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Sato",
"givenName": "Hiroyuki",
"id": "sg:person.07750750604.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05"
],
"type": "Person"
}
],
"datePublished": "2021",
"datePublishedReg": "2021-01-01",
"description": "This work proposes a multi-factorial evolutionary algorithm encouraging crossovers among solutions with similar target objective functions and suppressing crossovers among solutions with dissimilar target objective functions. Evolutionary multi-factorial optimization simultaneously optimizes multiple objective functions with a single population, a solution set. Each solution has a target objective function, and sharing solution resources in one population enhances the simultaneous search for multiple objective functions. However, the conventional multi-factorial evolutionary algorithm does not consider similarities among objective functions. As a result, solutions with dissimilar target objectives are crossed, and it deteriorates the search efficiency. The proposed algorithm estimates objective similarities based on search directions of solution subsets with different target objective functions in the design variable space. The proposed algorithm then encourages crossovers among solutions with similar target objectives and suppresses crossovers among solutions with dissimilar objectives. Experimental results using multi-factorial distance minimization problems show the proposed algorithm achieves higher search performance than the conventional evolutionary single-objective optimization and multi-factorial optimization.",
"editor": [
{
"familyName": "Nakano",
"givenName": "Tadashi",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-92163-7_5",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-92162-0",
"978-3-030-92163-7"
],
"name": "Bio-Inspired Information and Communications Technologies",
"type": "Book"
},
"keywords": [
"multi-factorial evolutionary algorithm",
"target objective function",
"multiple objective functions",
"objective function",
"evolutionary algorithm",
"design variable space",
"distance minimization problem",
"single-objective optimization",
"high search performance",
"solution subset",
"search direction",
"solution set",
"variable space",
"minimization problem",
"dissimilar objectives",
"target objectives",
"optimization",
"algorithm",
"simultaneous search",
"crossover",
"search efficiency",
"solution",
"search performance",
"parent selection",
"experimental results",
"function",
"space",
"problem",
"set",
"results",
"direction",
"performance",
"objective",
"efficiency",
"single population",
"subset",
"work",
"search",
"selection",
"similarity",
"resources",
"population",
"objective similarity"
],
"name": "Multi-factorial Evolutionary Algorithm Using Objective Similarity Based Parent Selection",
"pagination": "45-60",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1143576688"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-92163-7_5"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-92163-7_5",
"https://app.dimensions.ai/details/publication/pub.1143576688"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:48",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_35.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-92163-7_5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-92163-7_5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-92163-7_5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-92163-7_5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-92163-7_5'
This table displays all metadata directly associated to this object as RDF triples.
117 TRIPLES
23 PREDICATES
69 URIs
62 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-92163-7_5 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0103 |
3 | ″ | schema:author | N8658ecbb38e440e3b1535b57e6d25ca4 |
4 | ″ | schema:datePublished | 2021 |
5 | ″ | schema:datePublishedReg | 2021-01-01 |
6 | ″ | schema:description | This work proposes a multi-factorial evolutionary algorithm encouraging crossovers among solutions with similar target objective functions and suppressing crossovers among solutions with dissimilar target objective functions. Evolutionary multi-factorial optimization simultaneously optimizes multiple objective functions with a single population, a solution set. Each solution has a target objective function, and sharing solution resources in one population enhances the simultaneous search for multiple objective functions. However, the conventional multi-factorial evolutionary algorithm does not consider similarities among objective functions. As a result, solutions with dissimilar target objectives are crossed, and it deteriorates the search efficiency. The proposed algorithm estimates objective similarities based on search directions of solution subsets with different target objective functions in the design variable space. The proposed algorithm then encourages crossovers among solutions with similar target objectives and suppresses crossovers among solutions with dissimilar objectives. Experimental results using multi-factorial distance minimization problems show the proposed algorithm achieves higher search performance than the conventional evolutionary single-objective optimization and multi-factorial optimization. |
7 | ″ | schema:editor | N4415446960c14b61a3f99bac3556ae33 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N906b8bf3e3494d0d9063ada66902835a |
12 | ″ | schema:keywords | algorithm |
13 | ″ | ″ | crossover |
14 | ″ | ″ | design variable space |
15 | ″ | ″ | direction |
16 | ″ | ″ | dissimilar objectives |
17 | ″ | ″ | distance minimization problem |
18 | ″ | ″ | efficiency |
19 | ″ | ″ | evolutionary algorithm |
20 | ″ | ″ | experimental results |
21 | ″ | ″ | function |
22 | ″ | ″ | high search performance |
23 | ″ | ″ | minimization problem |
24 | ″ | ″ | multi-factorial evolutionary algorithm |
25 | ″ | ″ | multiple objective functions |
26 | ″ | ″ | objective |
27 | ″ | ″ | objective function |
28 | ″ | ″ | objective similarity |
29 | ″ | ″ | optimization |
30 | ″ | ″ | parent selection |
31 | ″ | ″ | performance |
32 | ″ | ″ | population |
33 | ″ | ″ | problem |
34 | ″ | ″ | resources |
35 | ″ | ″ | results |
36 | ″ | ″ | search |
37 | ″ | ″ | search direction |
38 | ″ | ″ | search efficiency |
39 | ″ | ″ | search performance |
40 | ″ | ″ | selection |
41 | ″ | ″ | set |
42 | ″ | ″ | similarity |
43 | ″ | ″ | simultaneous search |
44 | ″ | ″ | single population |
45 | ″ | ″ | single-objective optimization |
46 | ″ | ″ | solution |
47 | ″ | ″ | solution set |
48 | ″ | ″ | solution subset |
49 | ″ | ″ | space |
50 | ″ | ″ | subset |
51 | ″ | ″ | target objective function |
52 | ″ | ″ | target objectives |
53 | ″ | ″ | variable space |
54 | ″ | ″ | work |
55 | ″ | schema:name | Multi-factorial Evolutionary Algorithm Using Objective Similarity Based Parent Selection |
56 | ″ | schema:pagination | 45-60 |
57 | ″ | schema:productId | N4617da0638434ad5bfa35c83eb6cca9b |
58 | ″ | ″ | Nf2d7335da45f476c8d3c8b37e3cd7340 |
59 | ″ | schema:publisher | Nae24b3d1d84440a9aa3c9a24e86a9d53 |
60 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1143576688 |
61 | ″ | ″ | https://doi.org/10.1007/978-3-030-92163-7_5 |
62 | ″ | schema:sdDatePublished | 2022-05-10T10:48 |
63 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
64 | ″ | schema:sdPublisher | N81b328e9bee84e5a9a641a79b18f6ed1 |
65 | ″ | schema:url | https://doi.org/10.1007/978-3-030-92163-7_5 |
66 | ″ | sgo:license | sg:explorer/license/ |
67 | ″ | sgo:sdDataset | chapters |
68 | ″ | rdf:type | schema:Chapter |
69 | N3178ee2227cc495ebed3066672ca7890 | schema:familyName | Nakano |
70 | ″ | schema:givenName | Tadashi |
71 | ″ | rdf:type | schema:Person |
72 | N4415446960c14b61a3f99bac3556ae33 | rdf:first | N3178ee2227cc495ebed3066672ca7890 |
73 | ″ | rdf:rest | rdf:nil |
74 | N4617da0638434ad5bfa35c83eb6cca9b | schema:name | doi |
75 | ″ | schema:value | 10.1007/978-3-030-92163-7_5 |
76 | ″ | rdf:type | schema:PropertyValue |
77 | N69cf9d289cb04b1b8c09a5fb7bdd6e06 | rdf:first | sg:person.012774267611.99 |
78 | ″ | rdf:rest | Nd7901d716871407aafa12612a8943334 |
79 | N81b328e9bee84e5a9a641a79b18f6ed1 | schema:name | Springer Nature - SN SciGraph project |
80 | ″ | rdf:type | schema:Organization |
81 | N8658ecbb38e440e3b1535b57e6d25ca4 | rdf:first | sg:person.012202401617.02 |
82 | ″ | rdf:rest | N69cf9d289cb04b1b8c09a5fb7bdd6e06 |
83 | N906b8bf3e3494d0d9063ada66902835a | schema:isbn | 978-3-030-92162-0 |
84 | ″ | ″ | 978-3-030-92163-7 |
85 | ″ | schema:name | Bio-Inspired Information and Communications Technologies |
86 | ″ | rdf:type | schema:Book |
87 | Nae24b3d1d84440a9aa3c9a24e86a9d53 | schema:name | Springer Nature |
88 | ″ | rdf:type | schema:Organisation |
89 | Nd7901d716871407aafa12612a8943334 | rdf:first | sg:person.07750750604.05 |
90 | ″ | rdf:rest | rdf:nil |
91 | Nf2d7335da45f476c8d3c8b37e3cd7340 | schema:name | dimensions_id |
92 | ″ | schema:value | pub.1143576688 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
95 | ″ | schema:name | Mathematical Sciences |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | anzsrc-for:0103 | schema:inDefinedTermSet | anzsrc-for: |
98 | ″ | schema:name | Numerical and Computational Mathematics |
99 | ″ | rdf:type | schema:DefinedTerm |
100 | sg:person.012202401617.02 | schema:affiliation | grid-institutes:grid.266298.1 |
101 | ″ | schema:familyName | Kawakami |
102 | ″ | schema:givenName | Shio |
103 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012202401617.02 |
104 | ″ | rdf:type | schema:Person |
105 | sg:person.012774267611.99 | schema:affiliation | grid-institutes:grid.266298.1 |
106 | ″ | schema:familyName | Takadama |
107 | ″ | schema:givenName | Keiki |
108 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774267611.99 |
109 | ″ | rdf:type | schema:Person |
110 | sg:person.07750750604.05 | schema:affiliation | grid-institutes:grid.266298.1 |
111 | ″ | schema:familyName | Sato |
112 | ″ | schema:givenName | Hiroyuki |
113 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05 |
114 | ″ | rdf:type | schema:Person |
115 | grid-institutes:grid.266298.1 | schema:alternateName | The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan |
116 | ″ | schema:name | The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan |
117 | ″ | rdf:type | schema:Organization |