Multi-factorial Evolutionary Algorithm Using Objective Similarity Based Parent Selection View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2021

AUTHORS

Shio Kawakami , Keiki Takadama , Hiroyuki Sato

ABSTRACT

This work proposes a multi-factorial evolutionary algorithm encouraging crossovers among solutions with similar target objective functions and suppressing crossovers among solutions with dissimilar target objective functions. Evolutionary multi-factorial optimization simultaneously optimizes multiple objective functions with a single population, a solution set. Each solution has a target objective function, and sharing solution resources in one population enhances the simultaneous search for multiple objective functions. However, the conventional multi-factorial evolutionary algorithm does not consider similarities among objective functions. As a result, solutions with dissimilar target objectives are crossed, and it deteriorates the search efficiency. The proposed algorithm estimates objective similarities based on search directions of solution subsets with different target objective functions in the design variable space. The proposed algorithm then encourages crossovers among solutions with similar target objectives and suppresses crossovers among solutions with dissimilar objectives. Experimental results using multi-factorial distance minimization problems show the proposed algorithm achieves higher search performance than the conventional evolutionary single-objective optimization and multi-factorial optimization. More... »

PAGES

45-60

Book

TITLE

Bio-Inspired Information and Communications Technologies

ISBN

978-3-030-92162-0
978-3-030-92163-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-92163-7_5

DOI

http://dx.doi.org/10.1007/978-3-030-92163-7_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1143576688


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawakami", 
        "givenName": "Shio", 
        "id": "sg:person.012202401617.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012202401617.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takadama", 
        "givenName": "Keiki", 
        "id": "sg:person.012774267611.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774267611.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sato", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.07750750604.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021", 
    "datePublishedReg": "2021-01-01", 
    "description": "This work proposes a multi-factorial evolutionary algorithm encouraging crossovers among solutions with similar target objective functions and suppressing crossovers among solutions with dissimilar target objective functions. Evolutionary multi-factorial optimization simultaneously optimizes multiple objective functions with a single population, a solution set. Each solution has a target objective function, and sharing solution resources in one population enhances the simultaneous search for multiple objective functions. However, the conventional multi-factorial evolutionary algorithm does not consider similarities among objective functions. As a result, solutions with dissimilar target objectives are crossed, and it deteriorates the search efficiency. The proposed algorithm estimates objective similarities based on search directions of solution subsets with different target objective functions in the design variable space. The proposed algorithm then encourages crossovers among solutions with similar target objectives and suppresses crossovers among solutions with dissimilar objectives. Experimental results using multi-factorial distance minimization problems show the proposed algorithm achieves higher search performance than the conventional evolutionary single-objective optimization and multi-factorial optimization.", 
    "editor": [
      {
        "familyName": "Nakano", 
        "givenName": "Tadashi", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-92163-7_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-92162-0", 
        "978-3-030-92163-7"
      ], 
      "name": "Bio-Inspired Information and Communications Technologies", 
      "type": "Book"
    }, 
    "keywords": [
      "multi-factorial evolutionary algorithm", 
      "target objective function", 
      "multiple objective functions", 
      "objective function", 
      "evolutionary algorithm", 
      "design variable space", 
      "distance minimization problem", 
      "single-objective optimization", 
      "high search performance", 
      "solution subset", 
      "search direction", 
      "solution set", 
      "variable space", 
      "minimization problem", 
      "dissimilar objectives", 
      "target objectives", 
      "optimization", 
      "algorithm", 
      "simultaneous search", 
      "crossover", 
      "search efficiency", 
      "solution", 
      "search performance", 
      "parent selection", 
      "experimental results", 
      "function", 
      "space", 
      "problem", 
      "set", 
      "results", 
      "direction", 
      "performance", 
      "objective", 
      "efficiency", 
      "single population", 
      "subset", 
      "work", 
      "search", 
      "selection", 
      "similarity", 
      "resources", 
      "population", 
      "objective similarity"
    ], 
    "name": "Multi-factorial Evolutionary Algorithm Using Objective Similarity Based Parent Selection", 
    "pagination": "45-60", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1143576688"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-92163-7_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-92163-7_5", 
      "https://app.dimensions.ai/details/publication/pub.1143576688"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_35.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-92163-7_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-92163-7_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-92163-7_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-92163-7_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-92163-7_5'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      23 PREDICATES      69 URIs      62 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-92163-7_5 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N8658ecbb38e440e3b1535b57e6d25ca4
4 schema:datePublished 2021
5 schema:datePublishedReg 2021-01-01
6 schema:description This work proposes a multi-factorial evolutionary algorithm encouraging crossovers among solutions with similar target objective functions and suppressing crossovers among solutions with dissimilar target objective functions. Evolutionary multi-factorial optimization simultaneously optimizes multiple objective functions with a single population, a solution set. Each solution has a target objective function, and sharing solution resources in one population enhances the simultaneous search for multiple objective functions. However, the conventional multi-factorial evolutionary algorithm does not consider similarities among objective functions. As a result, solutions with dissimilar target objectives are crossed, and it deteriorates the search efficiency. The proposed algorithm estimates objective similarities based on search directions of solution subsets with different target objective functions in the design variable space. The proposed algorithm then encourages crossovers among solutions with similar target objectives and suppresses crossovers among solutions with dissimilar objectives. Experimental results using multi-factorial distance minimization problems show the proposed algorithm achieves higher search performance than the conventional evolutionary single-objective optimization and multi-factorial optimization.
7 schema:editor N4415446960c14b61a3f99bac3556ae33
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N906b8bf3e3494d0d9063ada66902835a
12 schema:keywords algorithm
13 crossover
14 design variable space
15 direction
16 dissimilar objectives
17 distance minimization problem
18 efficiency
19 evolutionary algorithm
20 experimental results
21 function
22 high search performance
23 minimization problem
24 multi-factorial evolutionary algorithm
25 multiple objective functions
26 objective
27 objective function
28 objective similarity
29 optimization
30 parent selection
31 performance
32 population
33 problem
34 resources
35 results
36 search
37 search direction
38 search efficiency
39 search performance
40 selection
41 set
42 similarity
43 simultaneous search
44 single population
45 single-objective optimization
46 solution
47 solution set
48 solution subset
49 space
50 subset
51 target objective function
52 target objectives
53 variable space
54 work
55 schema:name Multi-factorial Evolutionary Algorithm Using Objective Similarity Based Parent Selection
56 schema:pagination 45-60
57 schema:productId N4617da0638434ad5bfa35c83eb6cca9b
58 Nf2d7335da45f476c8d3c8b37e3cd7340
59 schema:publisher Nae24b3d1d84440a9aa3c9a24e86a9d53
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143576688
61 https://doi.org/10.1007/978-3-030-92163-7_5
62 schema:sdDatePublished 2022-05-10T10:48
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N81b328e9bee84e5a9a641a79b18f6ed1
65 schema:url https://doi.org/10.1007/978-3-030-92163-7_5
66 sgo:license sg:explorer/license/
67 sgo:sdDataset chapters
68 rdf:type schema:Chapter
69 N3178ee2227cc495ebed3066672ca7890 schema:familyName Nakano
70 schema:givenName Tadashi
71 rdf:type schema:Person
72 N4415446960c14b61a3f99bac3556ae33 rdf:first N3178ee2227cc495ebed3066672ca7890
73 rdf:rest rdf:nil
74 N4617da0638434ad5bfa35c83eb6cca9b schema:name doi
75 schema:value 10.1007/978-3-030-92163-7_5
76 rdf:type schema:PropertyValue
77 N69cf9d289cb04b1b8c09a5fb7bdd6e06 rdf:first sg:person.012774267611.99
78 rdf:rest Nd7901d716871407aafa12612a8943334
79 N81b328e9bee84e5a9a641a79b18f6ed1 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N8658ecbb38e440e3b1535b57e6d25ca4 rdf:first sg:person.012202401617.02
82 rdf:rest N69cf9d289cb04b1b8c09a5fb7bdd6e06
83 N906b8bf3e3494d0d9063ada66902835a schema:isbn 978-3-030-92162-0
84 978-3-030-92163-7
85 schema:name Bio-Inspired Information and Communications Technologies
86 rdf:type schema:Book
87 Nae24b3d1d84440a9aa3c9a24e86a9d53 schema:name Springer Nature
88 rdf:type schema:Organisation
89 Nd7901d716871407aafa12612a8943334 rdf:first sg:person.07750750604.05
90 rdf:rest rdf:nil
91 Nf2d7335da45f476c8d3c8b37e3cd7340 schema:name dimensions_id
92 schema:value pub.1143576688
93 rdf:type schema:PropertyValue
94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
95 schema:name Mathematical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
98 schema:name Numerical and Computational Mathematics
99 rdf:type schema:DefinedTerm
100 sg:person.012202401617.02 schema:affiliation grid-institutes:grid.266298.1
101 schema:familyName Kawakami
102 schema:givenName Shio
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012202401617.02
104 rdf:type schema:Person
105 sg:person.012774267611.99 schema:affiliation grid-institutes:grid.266298.1
106 schema:familyName Takadama
107 schema:givenName Keiki
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774267611.99
109 rdf:type schema:Person
110 sg:person.07750750604.05 schema:affiliation grid-institutes:grid.266298.1
111 schema:familyName Sato
112 schema:givenName Hiroyuki
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05
114 rdf:type schema:Person
115 grid-institutes:grid.266298.1 schema:alternateName The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan
116 schema:name The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...