Cross-Silo Process Mining with Federated Learning View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2021-11-18

AUTHORS

Asjad Khan , Aditya Ghose , Hoa Dam

ABSTRACT

Process analytics techniques such as process discovery play an important role in mining event data and providing organizations with insights about the behaviour of their deployed processes. In many practical settings, process log data is often geographically dispersed, may contain information that may be deemed sensitive and may be subject to compliance obligations that prevent this data from being transmitted to sites distinct to the site where the data was generated. Traditional process mining techniques operate by assuming that all relevant available process data is available in a single repository. However, anonymising, giving control access and safely transferring sensitive data across organization/site boundaries while preserving priacy guarantees is non-trivial. In this paper, we lay out the first steps for a federated future for process analytics where organizations routinely collaborate to learn and mine geographically dispersed process-related data. More... »

PAGES

612-626

Book

TITLE

Service-Oriented Computing

ISBN

978-3-030-91430-1
978-3-030-91431-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-91431-8_38

DOI

http://dx.doi.org/10.1007/978-3-030-91431-8_38

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142644967


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Wollongong, Wollongong, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1007.6", 
          "name": [
            "University of Wollongong, Wollongong, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khan", 
        "givenName": "Asjad", 
        "id": "sg:person.010647267001.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010647267001.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wollongong, Wollongong, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1007.6", 
          "name": [
            "University of Wollongong, Wollongong, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghose", 
        "givenName": "Aditya", 
        "id": "sg:person.015573517335.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015573517335.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wollongong, Wollongong, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1007.6", 
          "name": [
            "University of Wollongong, Wollongong, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dam", 
        "givenName": "Hoa", 
        "id": "sg:person.016073535637.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016073535637.27"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-11-18", 
    "datePublishedReg": "2021-11-18", 
    "description": "Process analytics techniques such as process discovery play an important role in mining event data and providing organizations with insights about the behaviour of their deployed processes. In many practical settings, process log data is often geographically dispersed, may contain information that may be deemed sensitive and may be subject to compliance obligations that prevent this data from being transmitted to sites distinct to the site where the data was generated. Traditional process mining techniques operate by assuming that all relevant available process data is available in a single repository. However, anonymising, giving control access and safely transferring sensitive data across organization/site boundaries while preserving priacy guarantees is non-trivial. In this paper, we lay out the first steps for a federated future for process analytics where organizations routinely collaborate to learn and mine geographically dispersed process-related data.", 
    "editor": [
      {
        "familyName": "Hacid", 
        "givenName": "Hakim", 
        "type": "Person"
      }, 
      {
        "familyName": "Kao", 
        "givenName": "Odej", 
        "type": "Person"
      }, 
      {
        "familyName": "Mecella", 
        "givenName": "Massimo", 
        "type": "Person"
      }, 
      {
        "familyName": "Moha", 
        "givenName": "Naouel", 
        "type": "Person"
      }, 
      {
        "familyName": "Paik", 
        "givenName": "Hye-young", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-91431-8_38", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-91430-1", 
        "978-3-030-91431-8"
      ], 
      "name": "Service-Oriented Computing", 
      "type": "Book"
    }, 
    "keywords": [
      "traditional process mining techniques", 
      "process mining techniques", 
      "process log data", 
      "process-related data", 
      "available process data", 
      "Federated Learning", 
      "sensitive data", 
      "process discovery", 
      "process mining", 
      "mining techniques", 
      "single repository", 
      "process analytics", 
      "control access", 
      "log data", 
      "process data", 
      "practical settings", 
      "event data", 
      "analytic techniques", 
      "analytics", 
      "mining", 
      "compliance obligations", 
      "repository", 
      "guarantees", 
      "first step", 
      "learning", 
      "technique", 
      "data", 
      "information", 
      "access", 
      "organization", 
      "discovery", 
      "step", 
      "process", 
      "important role", 
      "future", 
      "setting", 
      "boundaries", 
      "insights", 
      "behavior", 
      "site boundaries", 
      "obligations", 
      "role", 
      "sites", 
      "paper"
    ], 
    "name": "Cross-Silo Process Mining with Federated Learning", 
    "pagination": "612-626", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142644967"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-91431-8_38"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-91431-8_38", 
      "https://app.dimensions.ai/details/publication/pub.1142644967"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_94.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-91431-8_38"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-91431-8_38'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-91431-8_38'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-91431-8_38'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-91431-8_38'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      22 PREDICATES      68 URIs      61 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-91431-8_38 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nd6b0867a251f4414a552194a85649783
4 schema:datePublished 2021-11-18
5 schema:datePublishedReg 2021-11-18
6 schema:description Process analytics techniques such as process discovery play an important role in mining event data and providing organizations with insights about the behaviour of their deployed processes. In many practical settings, process log data is often geographically dispersed, may contain information that may be deemed sensitive and may be subject to compliance obligations that prevent this data from being transmitted to sites distinct to the site where the data was generated. Traditional process mining techniques operate by assuming that all relevant available process data is available in a single repository. However, anonymising, giving control access and safely transferring sensitive data across organization/site boundaries while preserving priacy guarantees is non-trivial. In this paper, we lay out the first steps for a federated future for process analytics where organizations routinely collaborate to learn and mine geographically dispersed process-related data.
7 schema:editor N4f34206f1ab645fb941309410b725c42
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N3c1c9b2fa0984c1ab0acd9b1ace3ca74
11 schema:keywords Federated Learning
12 access
13 analytic techniques
14 analytics
15 available process data
16 behavior
17 boundaries
18 compliance obligations
19 control access
20 data
21 discovery
22 event data
23 first step
24 future
25 guarantees
26 important role
27 information
28 insights
29 learning
30 log data
31 mining
32 mining techniques
33 obligations
34 organization
35 paper
36 practical settings
37 process
38 process analytics
39 process data
40 process discovery
41 process log data
42 process mining
43 process mining techniques
44 process-related data
45 repository
46 role
47 sensitive data
48 setting
49 single repository
50 site boundaries
51 sites
52 step
53 technique
54 traditional process mining techniques
55 schema:name Cross-Silo Process Mining with Federated Learning
56 schema:pagination 612-626
57 schema:productId N1356a1e5c20e4bc69a7400f4bf71526f
58 N1456c9563b2843dab6596aad4b3784dd
59 schema:publisher Nbe927185601b43e58dafc06c6a18f636
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142644967
61 https://doi.org/10.1007/978-3-030-91431-8_38
62 schema:sdDatePublished 2022-12-01T06:56
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N91ba7463b4994ea1b5e5fdf7cc6e7f9b
65 schema:url https://doi.org/10.1007/978-3-030-91431-8_38
66 sgo:license sg:explorer/license/
67 sgo:sdDataset chapters
68 rdf:type schema:Chapter
69 N1356a1e5c20e4bc69a7400f4bf71526f schema:name dimensions_id
70 schema:value pub.1142644967
71 rdf:type schema:PropertyValue
72 N1456c9563b2843dab6596aad4b3784dd schema:name doi
73 schema:value 10.1007/978-3-030-91431-8_38
74 rdf:type schema:PropertyValue
75 N3c1c9b2fa0984c1ab0acd9b1ace3ca74 schema:isbn 978-3-030-91430-1
76 978-3-030-91431-8
77 schema:name Service-Oriented Computing
78 rdf:type schema:Book
79 N42b793c909bc4906a77420eed5dba109 schema:familyName Hacid
80 schema:givenName Hakim
81 rdf:type schema:Person
82 N4565d534326449b6a54f4bedc904358f schema:familyName Paik
83 schema:givenName Hye-young
84 rdf:type schema:Person
85 N46984cbcd94d43adad335b579000351c rdf:first N4565d534326449b6a54f4bedc904358f
86 rdf:rest rdf:nil
87 N4c0c001aef0d4152a3457a16aaf37539 rdf:first N8e39f6e3a79a4de18be7d8eb9361bacf
88 rdf:rest N46984cbcd94d43adad335b579000351c
89 N4f34206f1ab645fb941309410b725c42 rdf:first N42b793c909bc4906a77420eed5dba109
90 rdf:rest Nffc1431306b744ef84aeebaf1d7c1fec
91 N6709bbe4de46490ab0460196cf24bc26 rdf:first sg:person.015573517335.70
92 rdf:rest Nde4613e5efc64e01887123629a0af7ea
93 N7e41dce74a154e3696958ed7ed380cc0 schema:familyName Mecella
94 schema:givenName Massimo
95 rdf:type schema:Person
96 N8e39f6e3a79a4de18be7d8eb9361bacf schema:familyName Moha
97 schema:givenName Naouel
98 rdf:type schema:Person
99 N905d367de3d34d24acf7d28ff90bb99a schema:familyName Kao
100 schema:givenName Odej
101 rdf:type schema:Person
102 N91ba7463b4994ea1b5e5fdf7cc6e7f9b schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Nbe927185601b43e58dafc06c6a18f636 schema:name Springer Nature
105 rdf:type schema:Organisation
106 Nc9ebfa5b82714d249fb2be82e9a5827c rdf:first N7e41dce74a154e3696958ed7ed380cc0
107 rdf:rest N4c0c001aef0d4152a3457a16aaf37539
108 Nd6b0867a251f4414a552194a85649783 rdf:first sg:person.010647267001.94
109 rdf:rest N6709bbe4de46490ab0460196cf24bc26
110 Nde4613e5efc64e01887123629a0af7ea rdf:first sg:person.016073535637.27
111 rdf:rest rdf:nil
112 Nffc1431306b744ef84aeebaf1d7c1fec rdf:first N905d367de3d34d24acf7d28ff90bb99a
113 rdf:rest Nc9ebfa5b82714d249fb2be82e9a5827c
114 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
115 schema:name Information and Computing Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
118 schema:name Information Systems
119 rdf:type schema:DefinedTerm
120 sg:person.010647267001.94 schema:affiliation grid-institutes:grid.1007.6
121 schema:familyName Khan
122 schema:givenName Asjad
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010647267001.94
124 rdf:type schema:Person
125 sg:person.015573517335.70 schema:affiliation grid-institutes:grid.1007.6
126 schema:familyName Ghose
127 schema:givenName Aditya
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015573517335.70
129 rdf:type schema:Person
130 sg:person.016073535637.27 schema:affiliation grid-institutes:grid.1007.6
131 schema:familyName Dam
132 schema:givenName Hoa
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016073535637.27
134 rdf:type schema:Person
135 grid-institutes:grid.1007.6 schema:alternateName University of Wollongong, Wollongong, Australia
136 schema:name University of Wollongong, Wollongong, Australia
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...