Ontology type: schema:Chapter
2021-10-18
AUTHORSMingxing Wang , Yonglin Hao
ABSTRACTAt ASIACRYPT 2019, Zhang proposes a near collision attack on A5/1. He claims that such an attack method can recover the 64-bit A5/1 state with a time complexity around 232\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{32}$$\end{document} cipher ticks and requires negligible memory complexities. Soon after its proposal, Zhang’s near collision attack is severely challenged by Derbez et al. who claim that Zhang’s attack cannot have a time complexity lower than Golic’s memoryless guess-and-determine attack dating back to EUROCRYPT 1997. In this paper, we study both the guess-and-determine and the near collision attacks for recovering A5/1 states with negligible memory complexities. In order to make a fair comparison, we recover the state s0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{s}^0$$\end{document} using both methods. We propose a new guessing technique that can construct linear equation filters in a more efficient manner. When evaluating time complexities, we take the filtering strength of the linear equation systems into account making the complexities more convincing. According to our detailed analysis, the new guess-and-determine attack can recover the state s0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{s}^0$$\end{document} with a time complexity of 243.91\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{43.91}$$\end{document} simple operations. The time complexity for the near collision attack is 250.57\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{50.57}$$\end{document} simple operations. More... »
PAGES191-211
Information Security and Cryptology
ISBN
978-3-030-88322-5
978-3-030-88323-2
http://scigraph.springernature.com/pub.10.1007/978-3-030-88323-2_10
DOIhttp://dx.doi.org/10.1007/978-3-030-88323-2_10
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1141950821
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "The 6th Research Institute of China Electronics Corporation, 100083, Beijing, China",
"id": "http://www.grid.ac/institutes/None",
"name": [
"State Key Laboratory of Cryptology, P.O. Box 5159, 100878, Beijing, China",
"The 6th Research Institute of China Electronics Corporation, 100083, Beijing, China"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Mingxing",
"type": "Person"
},
{
"affiliation": {
"alternateName": "State Key Laboratory of Cryptology, P.O. Box 5159, 100878, Beijing, China",
"id": "http://www.grid.ac/institutes/grid.496622.d",
"name": [
"State Key Laboratory of Cryptology, P.O. Box 5159, 100878, Beijing, China"
],
"type": "Organization"
},
"familyName": "Hao",
"givenName": "Yonglin",
"id": "sg:person.014270173173.47",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270173173.47"
],
"type": "Person"
}
],
"datePublished": "2021-10-18",
"datePublishedReg": "2021-10-18",
"description": "At ASIACRYPT 2019, Zhang proposes a near collision attack on A5/1. He claims that such an attack method can recover the 64-bit A5/1 state with a time complexity around 232\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2^{32}$$\\end{document} cipher ticks and requires negligible memory complexities. Soon after its proposal, Zhang\u2019s near collision attack is severely challenged by Derbez et al. who claim that Zhang\u2019s attack cannot have a time complexity lower than Golic\u2019s memoryless guess-and-determine attack dating back to EUROCRYPT 1997. In this paper, we study both the guess-and-determine and the near collision attacks for recovering A5/1 states with negligible memory complexities. In order to make a fair comparison, we recover the state s0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\boldsymbol{s}^0$$\\end{document} using both methods. We propose a new guessing technique that can construct linear equation filters in a more efficient manner. When evaluating time complexities, we take the filtering strength of the linear equation systems into account making the complexities more convincing. According to our detailed analysis, the new guess-and-determine attack can recover the state s0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\boldsymbol{s}^0$$\\end{document} with a time complexity of 243.91\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2^{43.91}$$\\end{document} simple operations. The time complexity for the near collision attack is 250.57\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2^{50.57}$$\\end{document} simple operations.",
"editor": [
{
"familyName": "Yu",
"givenName": "Yu",
"type": "Person"
},
{
"familyName": "Yung",
"givenName": "Moti",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-88323-2_10",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-88322-5",
"978-3-030-88323-2"
],
"name": "Information Security and Cryptology",
"type": "Book"
},
"keywords": [
"time complexity",
"linear equation system",
"memory complexity",
"equation system",
"new guess",
"determine attack",
"guess",
"cryptanalysis methods",
"efficient manner",
"filtering strength",
"complexity",
"fair comparison",
"Zhang",
"et al",
"attack methods",
"simple operation",
"detailed analysis",
"state",
"filter",
"operation",
"account",
"system",
"collision attack",
"order",
"technique",
"al",
"comparison",
"attacks",
"proposal",
"determine",
"analysis",
"strength",
"manner",
"ticks",
"method",
"paper",
"ASIACRYPT 2019",
"near-collision attack",
"cipher ticks"
],
"name": "Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1",
"pagination": "191-211",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1141950821"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-88323-2_10"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-88323-2_10",
"https://app.dimensions.ai/details/publication/pub.1141950821"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:34",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_417.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-88323-2_10"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-88323-2_10'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-88323-2_10'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-88323-2_10'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-88323-2_10'
This table displays all metadata directly associated to this object as RDF triples.
114 TRIPLES
23 PREDICATES
64 URIs
57 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-88323-2_10 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0104 |
3 | ″ | schema:author | Nb203bb8b71be4455985143420aefe9dc |
4 | ″ | schema:datePublished | 2021-10-18 |
5 | ″ | schema:datePublishedReg | 2021-10-18 |
6 | ″ | schema:description | At ASIACRYPT 2019, Zhang proposes a near collision attack on A5/1. He claims that such an attack method can recover the 64-bit A5/1 state with a time complexity around 232\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{32}$$\end{document} cipher ticks and requires negligible memory complexities. Soon after its proposal, Zhang’s near collision attack is severely challenged by Derbez et al. who claim that Zhang’s attack cannot have a time complexity lower than Golic’s memoryless guess-and-determine attack dating back to EUROCRYPT 1997. In this paper, we study both the guess-and-determine and the near collision attacks for recovering A5/1 states with negligible memory complexities. In order to make a fair comparison, we recover the state s0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{s}^0$$\end{document} using both methods. We propose a new guessing technique that can construct linear equation filters in a more efficient manner. When evaluating time complexities, we take the filtering strength of the linear equation systems into account making the complexities more convincing. According to our detailed analysis, the new guess-and-determine attack can recover the state s0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{s}^0$$\end{document} with a time complexity of 243.91\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{43.91}$$\end{document} simple operations. The time complexity for the near collision attack is 250.57\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{50.57}$$\end{document} simple operations. |
7 | ″ | schema:editor | N815fc605196341ecaa56525ae191adfd |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Nc571da262b29434b9ff675f2afb291d4 |
12 | ″ | schema:keywords | ASIACRYPT 2019 |
13 | ″ | ″ | Zhang |
14 | ″ | ″ | account |
15 | ″ | ″ | al |
16 | ″ | ″ | analysis |
17 | ″ | ″ | attack methods |
18 | ″ | ″ | attacks |
19 | ″ | ″ | cipher ticks |
20 | ″ | ″ | collision attack |
21 | ″ | ″ | comparison |
22 | ″ | ″ | complexity |
23 | ″ | ″ | cryptanalysis methods |
24 | ″ | ″ | detailed analysis |
25 | ″ | ″ | determine |
26 | ″ | ″ | determine attack |
27 | ″ | ″ | efficient manner |
28 | ″ | ″ | equation system |
29 | ″ | ″ | et al |
30 | ″ | ″ | fair comparison |
31 | ″ | ″ | filter |
32 | ″ | ″ | filtering strength |
33 | ″ | ″ | guess |
34 | ″ | ″ | linear equation system |
35 | ″ | ″ | manner |
36 | ″ | ″ | memory complexity |
37 | ″ | ″ | method |
38 | ″ | ″ | near-collision attack |
39 | ″ | ″ | new guess |
40 | ″ | ″ | operation |
41 | ″ | ″ | order |
42 | ″ | ″ | paper |
43 | ″ | ″ | proposal |
44 | ″ | ″ | simple operation |
45 | ″ | ″ | state |
46 | ″ | ″ | strength |
47 | ″ | ″ | system |
48 | ″ | ″ | technique |
49 | ″ | ″ | ticks |
50 | ″ | ″ | time complexity |
51 | ″ | schema:name | Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 |
52 | ″ | schema:pagination | 191-211 |
53 | ″ | schema:productId | N37cfd815595d4494aefda90cdb873918 |
54 | ″ | ″ | N5baff1b5061e47809633b36051087c53 |
55 | ″ | schema:publisher | Na9d0b8428a2049969e609cd92041f8fe |
56 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1141950821 |
57 | ″ | ″ | https://doi.org/10.1007/978-3-030-88323-2_10 |
58 | ″ | schema:sdDatePublished | 2022-06-01T22:34 |
59 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
60 | ″ | schema:sdPublisher | N8d741cad1cb346f29fba33fc798d80e3 |
61 | ″ | schema:url | https://doi.org/10.1007/978-3-030-88323-2_10 |
62 | ″ | sgo:license | sg:explorer/license/ |
63 | ″ | sgo:sdDataset | chapters |
64 | ″ | rdf:type | schema:Chapter |
65 | N24f4974a3ca24835a75f192080cae393 | schema:familyName | Yu |
66 | ″ | schema:givenName | Yu |
67 | ″ | rdf:type | schema:Person |
68 | N37cfd815595d4494aefda90cdb873918 | schema:name | dimensions_id |
69 | ″ | schema:value | pub.1141950821 |
70 | ″ | rdf:type | schema:PropertyValue |
71 | N58785144c8c74b6c91a37a4d64626bef | schema:familyName | Yung |
72 | ″ | schema:givenName | Moti |
73 | ″ | rdf:type | schema:Person |
74 | N5b70f73ac9304204a4bc9870997d288a | rdf:first | N58785144c8c74b6c91a37a4d64626bef |
75 | ″ | rdf:rest | rdf:nil |
76 | N5baff1b5061e47809633b36051087c53 | schema:name | doi |
77 | ″ | schema:value | 10.1007/978-3-030-88323-2_10 |
78 | ″ | rdf:type | schema:PropertyValue |
79 | N722cbbd4980b446283a21c9f9e32d267 | rdf:first | sg:person.014270173173.47 |
80 | ″ | rdf:rest | rdf:nil |
81 | N815fc605196341ecaa56525ae191adfd | rdf:first | N24f4974a3ca24835a75f192080cae393 |
82 | ″ | rdf:rest | N5b70f73ac9304204a4bc9870997d288a |
83 | N8d741cad1cb346f29fba33fc798d80e3 | schema:name | Springer Nature - SN SciGraph project |
84 | ″ | rdf:type | schema:Organization |
85 | Na9d0b8428a2049969e609cd92041f8fe | schema:name | Springer Nature |
86 | ″ | rdf:type | schema:Organisation |
87 | Nb203bb8b71be4455985143420aefe9dc | rdf:first | Nef6faa129be14761be9a2ef0d8bdcef2 |
88 | ″ | rdf:rest | N722cbbd4980b446283a21c9f9e32d267 |
89 | Nc571da262b29434b9ff675f2afb291d4 | schema:isbn | 978-3-030-88322-5 |
90 | ″ | ″ | 978-3-030-88323-2 |
91 | ″ | schema:name | Information Security and Cryptology |
92 | ″ | rdf:type | schema:Book |
93 | Nef6faa129be14761be9a2ef0d8bdcef2 | schema:affiliation | grid-institutes:None |
94 | ″ | schema:familyName | Wang |
95 | ″ | schema:givenName | Mingxing |
96 | ″ | rdf:type | schema:Person |
97 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
98 | ″ | schema:name | Mathematical Sciences |
99 | ″ | rdf:type | schema:DefinedTerm |
100 | anzsrc-for:0104 | schema:inDefinedTermSet | anzsrc-for: |
101 | ″ | schema:name | Statistics |
102 | ″ | rdf:type | schema:DefinedTerm |
103 | sg:person.014270173173.47 | schema:affiliation | grid-institutes:grid.496622.d |
104 | ″ | schema:familyName | Hao |
105 | ″ | schema:givenName | Yonglin |
106 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270173173.47 |
107 | ″ | rdf:type | schema:Person |
108 | grid-institutes:None | schema:alternateName | The 6th Research Institute of China Electronics Corporation, 100083, Beijing, China |
109 | ″ | schema:name | State Key Laboratory of Cryptology, P.O. Box 5159, 100878, Beijing, China |
110 | ″ | ″ | The 6th Research Institute of China Electronics Corporation, 100083, Beijing, China |
111 | ″ | rdf:type | schema:Organization |
112 | grid-institutes:grid.496622.d | schema:alternateName | State Key Laboratory of Cryptology, P.O. Box 5159, 100878, Beijing, China |
113 | ″ | schema:name | State Key Laboratory of Cryptology, P.O. Box 5159, 100878, Beijing, China |
114 | ″ | rdf:type | schema:Organization |