Saliency Detection in a Virtual Driving Environment for Autonomous Vehicle Behavior Improvement View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2021-09-16

AUTHORS

Csaba Antonya , Florin Gîrbacia , Cristian Postelnicu , Daniel Voinea , Silviu Butnariu

ABSTRACT

To make the best decisions in real-world situations, autonomous vehicles require learning algorithms that process a large number of labeled images. This paper aims to compare the automatically generated saliency maps with attention maps obtained with an eye-tracking device in order to provide automated labeling of images for the learning algorithm. To simulate traffic scenarios, we are using a virtual driving environment with a motion platform and an eye-tracking device for identifying the driver’s attention. The saliency maps are generated by post-processing the driver’s view provided by the front camera. More... »

PAGES

511-518

Book

TITLE

Augmented Reality, Virtual Reality, and Computer Graphics

ISBN

978-3-030-87594-7
978-3-030-87595-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-87595-4_37

DOI

http://dx.doi.org/10.1007/978-3-030-87595-4_37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141140360


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Transilvania University of Brasov, 29 Eroilor, 500036, Brasov, Romania", 
          "id": "http://www.grid.ac/institutes/grid.5120.6", 
          "name": [
            "Transilvania University of Brasov, 29 Eroilor, 500036, Brasov, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Antonya", 
        "givenName": "Csaba", 
        "id": "sg:person.010037006347.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010037006347.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Transilvania University of Brasov, 29 Eroilor, 500036, Brasov, Romania", 
          "id": "http://www.grid.ac/institutes/grid.5120.6", 
          "name": [
            "Transilvania University of Brasov, 29 Eroilor, 500036, Brasov, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00eerbacia", 
        "givenName": "Florin", 
        "id": "sg:person.015502545151.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015502545151.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Transilvania University of Brasov, 29 Eroilor, 500036, Brasov, Romania", 
          "id": "http://www.grid.ac/institutes/grid.5120.6", 
          "name": [
            "Transilvania University of Brasov, 29 Eroilor, 500036, Brasov, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Postelnicu", 
        "givenName": "Cristian", 
        "id": "sg:person.012774612241.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774612241.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Transilvania University of Brasov, 29 Eroilor, 500036, Brasov, Romania", 
          "id": "http://www.grid.ac/institutes/grid.5120.6", 
          "name": [
            "Transilvania University of Brasov, 29 Eroilor, 500036, Brasov, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Voinea", 
        "givenName": "Daniel", 
        "id": "sg:person.011475460515.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475460515.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Transilvania University of Brasov, 29 Eroilor, 500036, Brasov, Romania", 
          "id": "http://www.grid.ac/institutes/grid.5120.6", 
          "name": [
            "Transilvania University of Brasov, 29 Eroilor, 500036, Brasov, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Butnariu", 
        "givenName": "Silviu", 
        "id": "sg:person.014465232777.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014465232777.94"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-09-16", 
    "datePublishedReg": "2021-09-16", 
    "description": "To make the best decisions in real-world situations, autonomous vehicles require learning algorithms that process a large number of labeled images. This paper aims to compare the automatically generated saliency maps with attention maps obtained with an eye-tracking device in order to provide automated labeling of images for the learning algorithm. To simulate traffic scenarios, we are using a virtual driving environment with a motion platform and an eye-tracking device for identifying the driver\u2019s attention. The saliency maps are generated by post-processing the driver\u2019s view provided by the front camera.", 
    "editor": [
      {
        "familyName": "De Paolis", 
        "givenName": "Lucio Tommaso", 
        "type": "Person"
      }, 
      {
        "familyName": "Arpaia", 
        "givenName": "Pasquale", 
        "type": "Person"
      }, 
      {
        "familyName": "Bourdot", 
        "givenName": "Patrick", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-87595-4_37", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-87594-7", 
        "978-3-030-87595-4"
      ], 
      "name": "Augmented Reality, Virtual Reality, and Computer Graphics", 
      "type": "Book"
    }, 
    "keywords": [
      "virtual driving environment", 
      "eye-tracking device", 
      "saliency map", 
      "driving environment", 
      "labeling of images", 
      "real-world situations", 
      "front camera", 
      "learning algorithm", 
      "attention maps", 
      "saliency detection", 
      "autonomous vehicles", 
      "traffic scenarios", 
      "driver attention", 
      "driver's view", 
      "better decisions", 
      "motion platform", 
      "algorithm", 
      "images", 
      "large number", 
      "environment", 
      "camera", 
      "maps", 
      "platform", 
      "devices", 
      "scenarios", 
      "behavior improvement", 
      "vehicles", 
      "view", 
      "decisions", 
      "detection", 
      "attention", 
      "situation", 
      "order", 
      "improvement", 
      "number", 
      "labeling", 
      "paper", 
      "Autonomous Vehicle Behavior Improvement", 
      "Vehicle Behavior Improvement"
    ], 
    "name": "Saliency Detection in a Virtual Driving Environment for Autonomous Vehicle Behavior Improvement", 
    "pagination": "511-518", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141140360"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-87595-4_37"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-87595-4_37", 
      "https://app.dimensions.ai/details/publication/pub.1141140360"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_100.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-87595-4_37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-87595-4_37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-87595-4_37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-87595-4_37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-87595-4_37'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      23 PREDICATES      66 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-87595-4_37 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:17
4 anzsrc-for:1701
5 schema:author Nc1a71014f32b47939874174381f88907
6 schema:datePublished 2021-09-16
7 schema:datePublishedReg 2021-09-16
8 schema:description To make the best decisions in real-world situations, autonomous vehicles require learning algorithms that process a large number of labeled images. This paper aims to compare the automatically generated saliency maps with attention maps obtained with an eye-tracking device in order to provide automated labeling of images for the learning algorithm. To simulate traffic scenarios, we are using a virtual driving environment with a motion platform and an eye-tracking device for identifying the driver’s attention. The saliency maps are generated by post-processing the driver’s view provided by the front camera.
9 schema:editor N65620833b32347abb2b59d36fb8a6c83
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N619301b32b4c480583b411fb285cda8f
14 schema:keywords Autonomous Vehicle Behavior Improvement
15 Vehicle Behavior Improvement
16 algorithm
17 attention
18 attention maps
19 autonomous vehicles
20 behavior improvement
21 better decisions
22 camera
23 decisions
24 detection
25 devices
26 driver attention
27 driver's view
28 driving environment
29 environment
30 eye-tracking device
31 front camera
32 images
33 improvement
34 labeling
35 labeling of images
36 large number
37 learning algorithm
38 maps
39 motion platform
40 number
41 order
42 paper
43 platform
44 real-world situations
45 saliency detection
46 saliency map
47 scenarios
48 situation
49 traffic scenarios
50 vehicles
51 view
52 virtual driving environment
53 schema:name Saliency Detection in a Virtual Driving Environment for Autonomous Vehicle Behavior Improvement
54 schema:pagination 511-518
55 schema:productId N3b427ae38f274046aec7a02d182a1a3b
56 N6496c2d602b44933bde072d52a6b4658
57 schema:publisher Nc78d6d6b33e444afaa3cad3f9f411f8e
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141140360
59 https://doi.org/10.1007/978-3-030-87595-4_37
60 schema:sdDatePublished 2022-01-01T19:06
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N26c031eb870647f0aba0fbd3be422af3
63 schema:url https://doi.org/10.1007/978-3-030-87595-4_37
64 sgo:license sg:explorer/license/
65 sgo:sdDataset chapters
66 rdf:type schema:Chapter
67 N10e1262d876c4533b24caaa0fa39584c rdf:first sg:person.015502545151.91
68 rdf:rest N7e4608fc819c41a2a1c0653e80242af3
69 N26c031eb870647f0aba0fbd3be422af3 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N283e1681484f4304a1c536e679fcf56c rdf:first sg:person.014465232777.94
72 rdf:rest rdf:nil
73 N3b427ae38f274046aec7a02d182a1a3b schema:name doi
74 schema:value 10.1007/978-3-030-87595-4_37
75 rdf:type schema:PropertyValue
76 N4da40287ab9f4586ad9225577b339673 schema:familyName De Paolis
77 schema:givenName Lucio Tommaso
78 rdf:type schema:Person
79 N5f408ad802b34ebdbece0ec3ac383664 rdf:first Nf8cb03cc15b44e139d1d96e38a238b63
80 rdf:rest rdf:nil
81 N619301b32b4c480583b411fb285cda8f schema:isbn 978-3-030-87594-7
82 978-3-030-87595-4
83 schema:name Augmented Reality, Virtual Reality, and Computer Graphics
84 rdf:type schema:Book
85 N6496c2d602b44933bde072d52a6b4658 schema:name dimensions_id
86 schema:value pub.1141140360
87 rdf:type schema:PropertyValue
88 N65620833b32347abb2b59d36fb8a6c83 rdf:first N4da40287ab9f4586ad9225577b339673
89 rdf:rest Nac4817d990744373aa493c4b8a07cac1
90 N7e4608fc819c41a2a1c0653e80242af3 rdf:first sg:person.012774612241.44
91 rdf:rest Ne05685275aeb4da98749d8063a256170
92 Nac4817d990744373aa493c4b8a07cac1 rdf:first Nf5b61e114f994850918b7f3bc209f408
93 rdf:rest N5f408ad802b34ebdbece0ec3ac383664
94 Nc1a71014f32b47939874174381f88907 rdf:first sg:person.010037006347.21
95 rdf:rest N10e1262d876c4533b24caaa0fa39584c
96 Nc78d6d6b33e444afaa3cad3f9f411f8e schema:name Springer Nature
97 rdf:type schema:Organisation
98 Ne05685275aeb4da98749d8063a256170 rdf:first sg:person.011475460515.26
99 rdf:rest N283e1681484f4304a1c536e679fcf56c
100 Nf5b61e114f994850918b7f3bc209f408 schema:familyName Arpaia
101 schema:givenName Pasquale
102 rdf:type schema:Person
103 Nf8cb03cc15b44e139d1d96e38a238b63 schema:familyName Bourdot
104 schema:givenName Patrick
105 rdf:type schema:Person
106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information and Computing Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
110 schema:name Artificial Intelligence and Image Processing
111 rdf:type schema:DefinedTerm
112 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
113 schema:name Psychology and Cognitive Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
116 schema:name Psychology
117 rdf:type schema:DefinedTerm
118 sg:person.010037006347.21 schema:affiliation grid-institutes:grid.5120.6
119 schema:familyName Antonya
120 schema:givenName Csaba
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010037006347.21
122 rdf:type schema:Person
123 sg:person.011475460515.26 schema:affiliation grid-institutes:grid.5120.6
124 schema:familyName Voinea
125 schema:givenName Daniel
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475460515.26
127 rdf:type schema:Person
128 sg:person.012774612241.44 schema:affiliation grid-institutes:grid.5120.6
129 schema:familyName Postelnicu
130 schema:givenName Cristian
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774612241.44
132 rdf:type schema:Person
133 sg:person.014465232777.94 schema:affiliation grid-institutes:grid.5120.6
134 schema:familyName Butnariu
135 schema:givenName Silviu
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014465232777.94
137 rdf:type schema:Person
138 sg:person.015502545151.91 schema:affiliation grid-institutes:grid.5120.6
139 schema:familyName Gîrbacia
140 schema:givenName Florin
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015502545151.91
142 rdf:type schema:Person
143 grid-institutes:grid.5120.6 schema:alternateName Transilvania University of Brasov, 29 Eroilor, 500036, Brasov, Romania
144 schema:name Transilvania University of Brasov, 29 Eroilor, 500036, Brasov, Romania
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...