Ontology type: schema:Chapter
2021-08-11
AUTHORSIlan Komargodski , Wei-Kai Lin
ABSTRACTAn Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky (J. ACM 1996), is a (probabilistic) RAM that hides its access pattern, i.e., for every input the observed locations accessed are similarly distributed. In recent years there has been great progress both in terms of upper bounds as well as in terms of lower bounds, essentially pinning down the smallest overhead possible in various settings of parameters.We observe that there is a very natural setting of parameters in which no non-trivial lower bound is known, even not ones in restricted models of computation (like the so called balls and bins model). Let N and w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{w}}$$\end{document} be the number of cells and bit-size of cells, respectively, in the RAM that we wish to simulate obliviously. Denote by b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{b}}$$\end{document} the cell bit-size of the ORAM. All previous ORAM lower bounds have a multiplicative w/b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{w}}/{\boldsymbol{b}}$$\end{document} factor which makes them trivial in many settings of parameters of interest.In this work, we prove a new ORAM lower bound that captures this setting (and in all other settings it is at least as good as previous ones, quantitatively). We show that any ORAM must make (amortized) ΩlogNwm/logbw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varOmega \left( \log \left( \frac{N{\boldsymbol{w}}}{m}\right) /\log \left( \frac{{\boldsymbol{b}}}{{\boldsymbol{w}}}\right) \right) $$\end{document}memory probes for every logical operation. Here, m denotes the bit-size of the local storage of the ORAM. Our lower bound implies that logarithmic overhead in accesses is necessary, even if b≫w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\boldsymbol{b}}\gg {\boldsymbol{w}}$$\end{document}. Our lower bound is tight for all settings of parameters, up to the log(b/w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log ({\boldsymbol{b}}/{\boldsymbol{w}})$$\end{document} factor. Our bound also extends to the non-colluding multi-server setting.As an application, we derive the first (unconditional) separation between the overhead needed for ORAMs in the online vs. offline models. Specifically, we show that when w=logN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{w}}=\log N$$\end{document} and , there exists an offline ORAM that makes (on average) o(1) memory probes per logical operation while every online one must make Ω(logN/loglogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (\log N/\log \log N)$$\end{document} memory probes per logical operation. No such previous separation was known for any setting of parameters, not even in the balls and bins model. More... »
PAGES579-609
Advances in Cryptology – CRYPTO 2021
ISBN
978-3-030-84258-1
978-3-030-84259-8
http://scigraph.springernature.com/pub.10.1007/978-3-030-84259-8_20
DOIhttp://dx.doi.org/10.1007/978-3-030-84259-8_20
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1140318704
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology and Cognitive Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "NTT Research, Sunnyvale, CA, USA",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Hebrew University, Jerusalem, Israel",
"NTT Research, Sunnyvale, CA, USA"
],
"type": "Organization"
},
"familyName": "Komargodski",
"givenName": "Ilan",
"id": "sg:person.012204235441.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012204235441.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cornell University, Ithaca, USA",
"id": "http://www.grid.ac/institutes/grid.5386.8",
"name": [
"Cornell University, Ithaca, USA"
],
"type": "Organization"
},
"familyName": "Lin",
"givenName": "Wei-Kai",
"id": "sg:person.015030115735.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015030115735.91"
],
"type": "Person"
}
],
"datePublished": "2021-08-11",
"datePublishedReg": "2021-08-11",
"description": "An Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky (J. ACM 1996), is a (probabilistic) RAM that hides its access pattern, i.e., for every input the observed locations accessed are similarly distributed. In recent years there has been great progress both in terms of upper bounds as well as in terms of lower bounds, essentially pinning down the smallest overhead possible in various settings of parameters.We observe that there is a very natural setting of parameters in which no non-trivial lower bound is known, even not ones in restricted models of computation (like the so called balls and bins model). Let N and w\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\boldsymbol{w}}$$\\end{document} be the number of cells and bit-size of cells, respectively, in the RAM that we wish to simulate obliviously. Denote by b\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\boldsymbol{b}}$$\\end{document} the cell bit-size of the ORAM. All previous ORAM lower bounds have a multiplicative w/b\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\boldsymbol{w}}/{\\boldsymbol{b}}$$\\end{document} factor which makes them trivial in many settings of parameters of interest.In this work, we prove a new ORAM lower bound that captures this setting (and in all other settings it is at least as good as previous ones, quantitatively). We show that any ORAM must make (amortized) \u03a9logNwm/logbw\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\varOmega \\left( \\log \\left( \\frac{N{\\boldsymbol{w}}}{m}\\right) /\\log \\left( \\frac{{\\boldsymbol{b}}}{{\\boldsymbol{w}}}\\right) \\right) $$\\end{document}memory probes for every logical operation. Here, m denotes the bit-size of the local storage of the ORAM. Our lower bound implies that logarithmic overhead in accesses is necessary, even if b\u226bw\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\boldsymbol{b}}\\gg {\\boldsymbol{w}}$$\\end{document}. Our lower bound is tight for all settings of parameters, up\u00a0to the log(b/w)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\log ({\\boldsymbol{b}}/{\\boldsymbol{w}})$$\\end{document} factor. Our bound also extends to the non-colluding multi-server setting.As an application, we derive the first (unconditional) separation between the overhead needed for ORAMs in the online vs. offline models. Specifically, we show that when w=logN\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\boldsymbol{w}}=\\log N$$\\end{document} and , there exists an offline ORAM that makes (on average) o(1) memory probes per logical operation while every online one must make \u03a9(logN/loglogN)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varOmega (\\log N/\\log \\log N)$$\\end{document} memory probes per logical operation. No such previous separation was known for any setting of parameters, not even in the balls and bins model.",
"editor": [
{
"familyName": "Malkin",
"givenName": "Tal",
"type": "Person"
},
{
"familyName": "Peikert",
"givenName": "Chris",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-84259-8_20",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-84258-1",
"978-3-030-84259-8"
],
"name": "Advances in Cryptology \u2013 CRYPTO 2021",
"type": "Book"
},
"keywords": [
"setting of parameters",
"lower bounds",
"upper bounds",
"model of computation",
"bounds",
"logical operations",
"bin model",
"observed locations",
"parameters",
"model",
"computation",
"Oblivious RAM",
"Goldreich",
"terms",
"logarithmic",
"small overhead",
"operation",
"Ostrovsky",
"input",
"great progress",
"overhead",
"natural settings",
"applications",
"ball",
"recent years",
"one",
"number",
"first separation",
"rams",
"access patterns",
"interest",
"work",
"progress",
"setting",
"number of cells",
"probe",
"local storage",
"separation",
"location",
"patterns",
"factors",
"storage",
"Online",
"years",
"cells",
"previous separation",
"memory probes",
"multi-server setting"
],
"name": "A Logarithmic Lower Bound for Oblivious RAM (for All Parameters)",
"pagination": "579-609",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1140318704"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-84259-8_20"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-84259-8_20",
"https://app.dimensions.ai/details/publication/pub.1140318704"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:49",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_36.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-84259-8_20"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-84259-8_20'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-84259-8_20'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-84259-8_20'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-84259-8_20'
This table displays all metadata directly associated to this object as RDF triples.
124 TRIPLES
23 PREDICATES
73 URIs
66 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-84259-8_20 | schema:about | anzsrc-for:17 |
2 | ″ | ″ | anzsrc-for:1701 |
3 | ″ | schema:author | N1822d696e495478e91d7b93665a1a524 |
4 | ″ | schema:datePublished | 2021-08-11 |
5 | ″ | schema:datePublishedReg | 2021-08-11 |
6 | ″ | schema:description | An Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky (J. ACM 1996), is a (probabilistic) RAM that hides its access pattern, i.e., for every input the observed locations accessed are similarly distributed. In recent years there has been great progress both in terms of upper bounds as well as in terms of lower bounds, essentially pinning down the smallest overhead possible in various settings of parameters.We observe that there is a very natural setting of parameters in which no non-trivial lower bound is known, even not ones in restricted models of computation (like the so called balls and bins model). Let N and w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{w}}$$\end{document} be the number of cells and bit-size of cells, respectively, in the RAM that we wish to simulate obliviously. Denote by b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{b}}$$\end{document} the cell bit-size of the ORAM. All previous ORAM lower bounds have a multiplicative w/b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{w}}/{\boldsymbol{b}}$$\end{document} factor which makes them trivial in many settings of parameters of interest.In this work, we prove a new ORAM lower bound that captures this setting (and in all other settings it is at least as good as previous ones, quantitatively). We show that any ORAM must make (amortized) ΩlogNwm/logbw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varOmega \left( \log \left( \frac{N{\boldsymbol{w}}}{m}\right) /\log \left( \frac{{\boldsymbol{b}}}{{\boldsymbol{w}}}\right) \right) $$\end{document}memory probes for every logical operation. Here, m denotes the bit-size of the local storage of the ORAM. Our lower bound implies that logarithmic overhead in accesses is necessary, even if b≫w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\boldsymbol{b}}\gg {\boldsymbol{w}}$$\end{document}. Our lower bound is tight for all settings of parameters, up to the log(b/w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log ({\boldsymbol{b}}/{\boldsymbol{w}})$$\end{document} factor. Our bound also extends to the non-colluding multi-server setting.As an application, we derive the first (unconditional) separation between the overhead needed for ORAMs in the online vs. offline models. Specifically, we show that when w=logN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{w}}=\log N$$\end{document} and , there exists an offline ORAM that makes (on average) o(1) memory probes per logical operation while every online one must make Ω(logN/loglogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (\log N/\log \log N)$$\end{document} memory probes per logical operation. No such previous separation was known for any setting of parameters, not even in the balls and bins model. |
7 | ″ | schema:editor | N91048d91a5904d97b8f32bb0cd813a31 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Ne60c5d38c7b64456b056c1dce079af92 |
12 | ″ | schema:keywords | Goldreich |
13 | ″ | ″ | Oblivious RAM |
14 | ″ | ″ | Online |
15 | ″ | ″ | Ostrovsky |
16 | ″ | ″ | access patterns |
17 | ″ | ″ | applications |
18 | ″ | ″ | ball |
19 | ″ | ″ | bin model |
20 | ″ | ″ | bounds |
21 | ″ | ″ | cells |
22 | ″ | ″ | computation |
23 | ″ | ″ | factors |
24 | ″ | ″ | first separation |
25 | ″ | ″ | great progress |
26 | ″ | ″ | input |
27 | ″ | ″ | interest |
28 | ″ | ″ | local storage |
29 | ″ | ″ | location |
30 | ″ | ″ | logarithmic |
31 | ″ | ″ | logical operations |
32 | ″ | ″ | lower bounds |
33 | ″ | ″ | memory probes |
34 | ″ | ″ | model |
35 | ″ | ″ | model of computation |
36 | ″ | ″ | multi-server setting |
37 | ″ | ″ | natural settings |
38 | ″ | ″ | number |
39 | ″ | ″ | number of cells |
40 | ″ | ″ | observed locations |
41 | ″ | ″ | one |
42 | ″ | ″ | operation |
43 | ″ | ″ | overhead |
44 | ″ | ″ | parameters |
45 | ″ | ″ | patterns |
46 | ″ | ″ | previous separation |
47 | ″ | ″ | probe |
48 | ″ | ″ | progress |
49 | ″ | ″ | rams |
50 | ″ | ″ | recent years |
51 | ″ | ″ | separation |
52 | ″ | ″ | setting |
53 | ″ | ″ | setting of parameters |
54 | ″ | ″ | small overhead |
55 | ″ | ″ | storage |
56 | ″ | ″ | terms |
57 | ″ | ″ | upper bounds |
58 | ″ | ″ | work |
59 | ″ | ″ | years |
60 | ″ | schema:name | A Logarithmic Lower Bound for Oblivious RAM (for All Parameters) |
61 | ″ | schema:pagination | 579-609 |
62 | ″ | schema:productId | N33f841a6be1f423d8b5112c88fa5c754 |
63 | ″ | ″ | Nef30d912aa7c44faab26f7ab33a0ed5d |
64 | ″ | schema:publisher | N2b5c062b43c145cd8a47f1afce784925 |
65 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1140318704 |
66 | ″ | ″ | https://doi.org/10.1007/978-3-030-84259-8_20 |
67 | ″ | schema:sdDatePublished | 2022-05-10T10:49 |
68 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
69 | ″ | schema:sdPublisher | N066c7e8ec66f4a508d62c9588e98d3e9 |
70 | ″ | schema:url | https://doi.org/10.1007/978-3-030-84259-8_20 |
71 | ″ | sgo:license | sg:explorer/license/ |
72 | ″ | sgo:sdDataset | chapters |
73 | ″ | rdf:type | schema:Chapter |
74 | N066c7e8ec66f4a508d62c9588e98d3e9 | schema:name | Springer Nature - SN SciGraph project |
75 | ″ | rdf:type | schema:Organization |
76 | N1822d696e495478e91d7b93665a1a524 | rdf:first | sg:person.012204235441.12 |
77 | ″ | rdf:rest | N5764579c74ef4fad8c9f6cb4dd30737d |
78 | N2b5c062b43c145cd8a47f1afce784925 | schema:name | Springer Nature |
79 | ″ | rdf:type | schema:Organisation |
80 | N33f841a6be1f423d8b5112c88fa5c754 | schema:name | dimensions_id |
81 | ″ | schema:value | pub.1140318704 |
82 | ″ | rdf:type | schema:PropertyValue |
83 | N5764579c74ef4fad8c9f6cb4dd30737d | rdf:first | sg:person.015030115735.91 |
84 | ″ | rdf:rest | rdf:nil |
85 | N91048d91a5904d97b8f32bb0cd813a31 | rdf:first | Nd9a64abd2b754329a02f5593039105a7 |
86 | ″ | rdf:rest | Nd335b2e158b540248704c50696612ee8 |
87 | Nd335b2e158b540248704c50696612ee8 | rdf:first | Nd97cbaf4c3d0478c9d0955f4255ca5ea |
88 | ″ | rdf:rest | rdf:nil |
89 | Nd97cbaf4c3d0478c9d0955f4255ca5ea | schema:familyName | Peikert |
90 | ″ | schema:givenName | Chris |
91 | ″ | rdf:type | schema:Person |
92 | Nd9a64abd2b754329a02f5593039105a7 | schema:familyName | Malkin |
93 | ″ | schema:givenName | Tal |
94 | ″ | rdf:type | schema:Person |
95 | Ne60c5d38c7b64456b056c1dce079af92 | schema:isbn | 978-3-030-84258-1 |
96 | ″ | ″ | 978-3-030-84259-8 |
97 | ″ | schema:name | Advances in Cryptology – CRYPTO 2021 |
98 | ″ | rdf:type | schema:Book |
99 | Nef30d912aa7c44faab26f7ab33a0ed5d | schema:name | doi |
100 | ″ | schema:value | 10.1007/978-3-030-84259-8_20 |
101 | ″ | rdf:type | schema:PropertyValue |
102 | anzsrc-for:17 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Psychology and Cognitive Sciences |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | anzsrc-for:1701 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Psychology |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | sg:person.012204235441.12 | schema:affiliation | grid-institutes:None |
109 | ″ | schema:familyName | Komargodski |
110 | ″ | schema:givenName | Ilan |
111 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012204235441.12 |
112 | ″ | rdf:type | schema:Person |
113 | sg:person.015030115735.91 | schema:affiliation | grid-institutes:grid.5386.8 |
114 | ″ | schema:familyName | Lin |
115 | ″ | schema:givenName | Wei-Kai |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015030115735.91 |
117 | ″ | rdf:type | schema:Person |
118 | grid-institutes:None | schema:alternateName | NTT Research, Sunnyvale, CA, USA |
119 | ″ | schema:name | Hebrew University, Jerusalem, Israel |
120 | ″ | ″ | NTT Research, Sunnyvale, CA, USA |
121 | ″ | rdf:type | schema:Organization |
122 | grid-institutes:grid.5386.8 | schema:alternateName | Cornell University, Ithaca, USA |
123 | ″ | schema:name | Cornell University, Ithaca, USA |
124 | ″ | rdf:type | schema:Organization |