Simulation of Diffusion Processes in Bimetallic Nanofilms View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2021-12-15

AUTHORS

Vladimir Myasnichenko , Rossen Mikhov , Leoneed Kirilov , Nickolay Sdobnykov , Denis Sokolov , Stefka Fidanova

ABSTRACT

Surface diffusion plays a crucial role in the formation of the shape and morphology of growing nanoparticles and nanofilms. Bulk heterodiffusion occurs at uneven (irregular) concentrations of several metals, in the presence of free energy in the system. Atoms of each sort tend to be evenly distributed in volume and form mixed bonds. In this paper, we propose an approach for modeling diffusion processes in nanoalloys by the vacancy mechanism. It is a hybrid Monte Carlo approach based on computing the probability for a transition of each atom belonging to the first three coordination spheres. The energy of the system is computed with a tight binding potential. The efficiency of the approach is demonstrated simulating Au–Ag bimetallic nanofilms with a different number of vacancies in the crystal lattice and a different temperature. More... »

PAGES

221-233

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-82397-9_11

DOI

http://dx.doi.org/10.1007/978-3-030-82397-9_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1143872532


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tver State University, Tver, Russia", 
          "id": "http://www.grid.ac/institutes/grid.438242.b", 
          "name": [
            "Tver State University, Tver, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Myasnichenko", 
        "givenName": "Vladimir", 
        "id": "sg:person.013562762060.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562762060.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technologies\u2014Bulg, Academy of Sciences, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424988.b", 
          "name": [
            "Institute of Information and Communication Technologies\u2014Bulg, Academy of Sciences, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mikhov", 
        "givenName": "Rossen", 
        "id": "sg:person.014434131110.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014434131110.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technologies\u2014Bulg, Academy of Sciences, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424988.b", 
          "name": [
            "Institute of Information and Communication Technologies\u2014Bulg, Academy of Sciences, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirilov", 
        "givenName": "Leoneed", 
        "id": "sg:person.015700215743.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015700215743.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tver State University, Tver, Russia", 
          "id": "http://www.grid.ac/institutes/grid.438242.b", 
          "name": [
            "Tver State University, Tver, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sdobnykov", 
        "givenName": "Nickolay", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tver State University, Tver, Russia", 
          "id": "http://www.grid.ac/institutes/grid.438242.b", 
          "name": [
            "Tver State University, Tver, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sokolov", 
        "givenName": "Denis", 
        "id": "sg:person.016236433230.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016236433230.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technologies\u2014Bulg, Academy of Sciences, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424988.b", 
          "name": [
            "Institute of Information and Communication Technologies\u2014Bulg, Academy of Sciences, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "id": "sg:person.011173106320.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-12-15", 
    "datePublishedReg": "2021-12-15", 
    "description": "Surface diffusion plays a crucial role in the formation of the shape and morphology of growing nanoparticles and nanofilms. Bulk heterodiffusion occurs at uneven (irregular) concentrations of several metals, in the presence of free energy in the system. Atoms of each sort tend to be evenly distributed in volume and form mixed bonds. In this paper, we propose an approach for modeling diffusion processes in nanoalloys by the vacancy mechanism. It is a hybrid Monte Carlo approach based on computing the probability for a transition of each atom belonging to the first three coordination spheres. The energy of the system is computed with a tight binding potential. The efficiency of the approach is demonstrated simulating Au\u2013Ag bimetallic nanofilms with a different number of vacancies in the crystal lattice and a different temperature.", 
    "editor": [
      {
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-82397-9_11", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-82396-2", 
        "978-3-030-82397-9"
      ], 
      "name": "Recent Advances in Computational Optimization", 
      "type": "Book"
    }, 
    "keywords": [
      "hybrid Monte Carlo approach", 
      "Monte Carlo approach", 
      "diffusion process", 
      "Carlo approach", 
      "different numbers", 
      "free energy", 
      "crystal lattice", 
      "surface diffusion", 
      "vacancy mechanism", 
      "atoms", 
      "lattice", 
      "mixed bonds", 
      "approach", 
      "simulations", 
      "nanofilms", 
      "probability", 
      "energy", 
      "system", 
      "binding potential", 
      "uneven concentration", 
      "transition", 
      "sphere", 
      "diffusion", 
      "shape", 
      "number", 
      "vacancies", 
      "nanoalloys", 
      "different temperatures", 
      "process", 
      "efficiency", 
      "crucial role", 
      "temperature", 
      "tight-binding potential", 
      "sort", 
      "coordination sphere", 
      "heterodiffusion", 
      "potential", 
      "presence", 
      "volume", 
      "metals", 
      "formation", 
      "morphology", 
      "mechanism", 
      "bonds", 
      "nanoparticles", 
      "role", 
      "concentration", 
      "Au-Ag", 
      "paper"
    ], 
    "name": "Simulation of Diffusion Processes in Bimetallic Nanofilms", 
    "pagination": "221-233", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1143872532"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-82397-9_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-82397-9_11", 
      "https://app.dimensions.ai/details/publication/pub.1143872532"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_277.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-82397-9_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-82397-9_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-82397-9_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-82397-9_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-82397-9_11'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      23 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-82397-9_11 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N7235022c055d4f92b2a976542cfcc159
4 schema:datePublished 2021-12-15
5 schema:datePublishedReg 2021-12-15
6 schema:description Surface diffusion plays a crucial role in the formation of the shape and morphology of growing nanoparticles and nanofilms. Bulk heterodiffusion occurs at uneven (irregular) concentrations of several metals, in the presence of free energy in the system. Atoms of each sort tend to be evenly distributed in volume and form mixed bonds. In this paper, we propose an approach for modeling diffusion processes in nanoalloys by the vacancy mechanism. It is a hybrid Monte Carlo approach based on computing the probability for a transition of each atom belonging to the first three coordination spheres. The energy of the system is computed with a tight binding potential. The efficiency of the approach is demonstrated simulating Au–Ag bimetallic nanofilms with a different number of vacancies in the crystal lattice and a different temperature.
7 schema:editor N54556b514dc641e596910fbaf6b365fe
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nb711a75eccb94dc5afe97a076cd050b3
12 schema:keywords Au-Ag
13 Carlo approach
14 Monte Carlo approach
15 approach
16 atoms
17 binding potential
18 bonds
19 concentration
20 coordination sphere
21 crucial role
22 crystal lattice
23 different numbers
24 different temperatures
25 diffusion
26 diffusion process
27 efficiency
28 energy
29 formation
30 free energy
31 heterodiffusion
32 hybrid Monte Carlo approach
33 lattice
34 mechanism
35 metals
36 mixed bonds
37 morphology
38 nanoalloys
39 nanofilms
40 nanoparticles
41 number
42 paper
43 potential
44 presence
45 probability
46 process
47 role
48 shape
49 simulations
50 sort
51 sphere
52 surface diffusion
53 system
54 temperature
55 tight-binding potential
56 transition
57 uneven concentration
58 vacancies
59 vacancy mechanism
60 volume
61 schema:name Simulation of Diffusion Processes in Bimetallic Nanofilms
62 schema:pagination 221-233
63 schema:productId N0407ca0acd0b4ed79c5010d1f9e31484
64 N373c6d04071649f6b974cf3ca12019e0
65 schema:publisher N7961ffa205a24c14b73e288ea877ec02
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143872532
67 https://doi.org/10.1007/978-3-030-82397-9_11
68 schema:sdDatePublished 2022-05-20T07:44
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nd4f32a7b95b04807a536d29890954bfa
71 schema:url https://doi.org/10.1007/978-3-030-82397-9_11
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N0407ca0acd0b4ed79c5010d1f9e31484 schema:name doi
76 schema:value 10.1007/978-3-030-82397-9_11
77 rdf:type schema:PropertyValue
78 N373c6d04071649f6b974cf3ca12019e0 schema:name dimensions_id
79 schema:value pub.1143872532
80 rdf:type schema:PropertyValue
81 N3792af62768f4ab584e1e602d8057e77 rdf:first sg:person.014434131110.58
82 rdf:rest Ncedcfe25bac34ac1a2c8d4b2e12f4df5
83 N4609b4e3edfb41948766f5b255135c9e rdf:first sg:person.016236433230.84
84 rdf:rest N7b4181dc13ae4a9f8445f70f14154c41
85 N54556b514dc641e596910fbaf6b365fe rdf:first Nfb6683578b194238bc73c65387ee6798
86 rdf:rest rdf:nil
87 N7235022c055d4f92b2a976542cfcc159 rdf:first sg:person.013562762060.25
88 rdf:rest N3792af62768f4ab584e1e602d8057e77
89 N7961ffa205a24c14b73e288ea877ec02 schema:name Springer Nature
90 rdf:type schema:Organisation
91 N7b4181dc13ae4a9f8445f70f14154c41 rdf:first sg:person.011173106320.18
92 rdf:rest rdf:nil
93 N84706d69794f4d43a8bf61bb7ab4696c schema:affiliation grid-institutes:grid.438242.b
94 schema:familyName Sdobnykov
95 schema:givenName Nickolay
96 rdf:type schema:Person
97 N99348ac7726e40c8a9a857aaa0be800b rdf:first N84706d69794f4d43a8bf61bb7ab4696c
98 rdf:rest N4609b4e3edfb41948766f5b255135c9e
99 Nb711a75eccb94dc5afe97a076cd050b3 schema:isbn 978-3-030-82396-2
100 978-3-030-82397-9
101 schema:name Recent Advances in Computational Optimization
102 rdf:type schema:Book
103 Ncedcfe25bac34ac1a2c8d4b2e12f4df5 rdf:first sg:person.015700215743.52
104 rdf:rest N99348ac7726e40c8a9a857aaa0be800b
105 Nd4f32a7b95b04807a536d29890954bfa schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Nfb6683578b194238bc73c65387ee6798 schema:familyName Fidanova
108 schema:givenName Stefka
109 rdf:type schema:Person
110 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
111 schema:name Chemical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
114 schema:name Physical Chemistry (incl. Structural)
115 rdf:type schema:DefinedTerm
116 sg:person.011173106320.18 schema:affiliation grid-institutes:grid.424988.b
117 schema:familyName Fidanova
118 schema:givenName Stefka
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18
120 rdf:type schema:Person
121 sg:person.013562762060.25 schema:affiliation grid-institutes:grid.438242.b
122 schema:familyName Myasnichenko
123 schema:givenName Vladimir
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562762060.25
125 rdf:type schema:Person
126 sg:person.014434131110.58 schema:affiliation grid-institutes:grid.424988.b
127 schema:familyName Mikhov
128 schema:givenName Rossen
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014434131110.58
130 rdf:type schema:Person
131 sg:person.015700215743.52 schema:affiliation grid-institutes:grid.424988.b
132 schema:familyName Kirilov
133 schema:givenName Leoneed
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015700215743.52
135 rdf:type schema:Person
136 sg:person.016236433230.84 schema:affiliation grid-institutes:grid.438242.b
137 schema:familyName Sokolov
138 schema:givenName Denis
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016236433230.84
140 rdf:type schema:Person
141 grid-institutes:grid.424988.b schema:alternateName Institute of Information and Communication Technologies—Bulg, Academy of Sciences, Sofia, Bulgaria
142 schema:name Institute of Information and Communication Technologies—Bulg, Academy of Sciences, Sofia, Bulgaria
143 rdf:type schema:Organization
144 grid-institutes:grid.438242.b schema:alternateName Tver State University, Tver, Russia
145 schema:name Tver State University, Tver, Russia
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...