Harnessing the Complex Compositional Space of High-Entropy Alloys View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2021

AUTHORS

S. Joseph Poon , Jie Qi , Andrew M. Cheung

ABSTRACT

High-entropy alloys reside in the complex, high-dimensional composition space. A fundamental challenge of high-entropy alloys development lies in how to predict the specific alloy phases and properties accurately. This chapter provides an overview of the data-driven approaches employed to date to tackle this exponentially hard problem of designing high-entropy alloys. Various utilizations of empirical parameters, statistical methods, first-principles and thermodynamic calculations, and machine learning are reviewed. In an alternative approach, the effectiveness of using phenomenological features and data-inspired adaptive features in the prediction of the compositions of high-entropy solid solution phases and intermetallic alloy composites is demonstrated. The prospect of high-entropy alloys as a new class of high-performance functional materials is discussed in light of the influence of entropic effects. The challenges and limitations of the current approaches to high-entropy alloys design are pointed out, and some plausible future developments are presented. More... »

PAGES

63-113

Book

TITLE

High-Entropy Materials: Theory, Experiments, and Applications

ISBN

978-3-030-77640-4
978-3-030-77641-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-77641-1_3

DOI

http://dx.doi.org/10.1007/978-3-030-77641-1_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1144363577


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Virginia, Charlottesville, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Physics, University of Virginia, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poon", 
        "givenName": "S. Joseph", 
        "id": "sg:person.010252015157.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Virginia, Charlottesville, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Physics, University of Virginia, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qi", 
        "givenName": "Jie", 
        "id": "sg:person.07715562503.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715562503.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Engineering Physics, University of Virginia, Charlottesville, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Engineering Physics, University of Virginia, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheung", 
        "givenName": "Andrew M.", 
        "id": "sg:person.010077464334.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077464334.56"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021", 
    "datePublishedReg": "2021-01-01", 
    "description": "High-entropy alloys reside in the complex, high-dimensional composition space. A fundamental challenge of high-entropy alloys development lies in how to predict the specific alloy phases and properties accurately. This chapter provides an overview of the data-driven approaches employed to date to tackle this exponentially hard problem of designing high-entropy alloys. Various utilizations of empirical parameters, statistical methods, first-principles and thermodynamic calculations, and machine learning are reviewed. In an alternative approach, the effectiveness of using phenomenological features and data-inspired adaptive features in the prediction of the compositions of high-entropy solid solution phases and intermetallic alloy composites is demonstrated. The prospect of high-entropy alloys as a new class of high-performance functional materials is discussed in light of the influence of entropic effects. The challenges and limitations of the current approaches to high-entropy alloys design are pointed out, and some plausible future developments are presented.", 
    "editor": [
      {
        "familyName": "Brechtl", 
        "givenName": "Jamieson", 
        "type": "Person"
      }, 
      {
        "familyName": "Liaw", 
        "givenName": "Peter K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-77641-1_3", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-77640-4", 
        "978-3-030-77641-1"
      ], 
      "name": "High-Entropy Materials: Theory, Experiments, and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "high-entropy alloys", 
      "high-entropy alloy design", 
      "high-performance functional materials", 
      "solid solution phase", 
      "alloy composites", 
      "alloy design", 
      "alloy", 
      "alloy phase", 
      "high-dimensional composition space", 
      "functional materials", 
      "thermodynamic calculations", 
      "composition space", 
      "compositional space", 
      "empirical parameters", 
      "data-driven approach", 
      "solution phase", 
      "plausible future developments", 
      "composites", 
      "phase", 
      "future development", 
      "materials", 
      "fundamental challenge", 
      "design", 
      "properties", 
      "phenomenological features", 
      "parameters", 
      "new class", 
      "alternative approach", 
      "approach", 
      "prediction", 
      "entropic effects", 
      "calculations", 
      "influence", 
      "adaptive features", 
      "statistical methods", 
      "method", 
      "utilization", 
      "composition", 
      "current approaches", 
      "challenges", 
      "features", 
      "prospects", 
      "hard problem", 
      "effectiveness", 
      "machine learning", 
      "space", 
      "problem", 
      "development", 
      "limitations", 
      "effect", 
      "light", 
      "overview", 
      "chapter", 
      "class", 
      "date", 
      "learning"
    ], 
    "name": "Harnessing the Complex Compositional Space of High-Entropy Alloys", 
    "pagination": "63-113", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1144363577"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-77641-1_3"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-77641-1_3", 
      "https://app.dimensions.ai/details/publication/pub.1144363577"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_409.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-77641-1_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-77641-1_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-77641-1_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-77641-1_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-77641-1_3'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      22 PREDICATES      80 URIs      73 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-77641-1_3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N3c45e71a6b3d4ec885ef13a2d951d6de
4 schema:datePublished 2021
5 schema:datePublishedReg 2021-01-01
6 schema:description High-entropy alloys reside in the complex, high-dimensional composition space. A fundamental challenge of high-entropy alloys development lies in how to predict the specific alloy phases and properties accurately. This chapter provides an overview of the data-driven approaches employed to date to tackle this exponentially hard problem of designing high-entropy alloys. Various utilizations of empirical parameters, statistical methods, first-principles and thermodynamic calculations, and machine learning are reviewed. In an alternative approach, the effectiveness of using phenomenological features and data-inspired adaptive features in the prediction of the compositions of high-entropy solid solution phases and intermetallic alloy composites is demonstrated. The prospect of high-entropy alloys as a new class of high-performance functional materials is discussed in light of the influence of entropic effects. The challenges and limitations of the current approaches to high-entropy alloys design are pointed out, and some plausible future developments are presented.
7 schema:editor N5b84b1315d774086bd90bcd657501b3d
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N6f001371decf440c8674c11146bf92d6
11 schema:keywords adaptive features
12 alloy
13 alloy composites
14 alloy design
15 alloy phase
16 alternative approach
17 approach
18 calculations
19 challenges
20 chapter
21 class
22 composites
23 composition
24 composition space
25 compositional space
26 current approaches
27 data-driven approach
28 date
29 design
30 development
31 effect
32 effectiveness
33 empirical parameters
34 entropic effects
35 features
36 functional materials
37 fundamental challenge
38 future development
39 hard problem
40 high-dimensional composition space
41 high-entropy alloy design
42 high-entropy alloys
43 high-performance functional materials
44 influence
45 learning
46 light
47 limitations
48 machine learning
49 materials
50 method
51 new class
52 overview
53 parameters
54 phase
55 phenomenological features
56 plausible future developments
57 prediction
58 problem
59 properties
60 prospects
61 solid solution phase
62 solution phase
63 space
64 statistical methods
65 thermodynamic calculations
66 utilization
67 schema:name Harnessing the Complex Compositional Space of High-Entropy Alloys
68 schema:pagination 63-113
69 schema:productId N3c4616a7ec4e4f6e8938c42fe0fd8cd1
70 Na906c02055684cdb802a8b4042034b41
71 schema:publisher Nc478dc10f6bb47cda7e9b3a232cb5f6c
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1144363577
73 https://doi.org/10.1007/978-3-030-77641-1_3
74 schema:sdDatePublished 2022-12-01T06:53
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Nc7d938de314e403299e8ea6bdffc73ed
77 schema:url https://doi.org/10.1007/978-3-030-77641-1_3
78 sgo:license sg:explorer/license/
79 sgo:sdDataset chapters
80 rdf:type schema:Chapter
81 N3c45e71a6b3d4ec885ef13a2d951d6de rdf:first sg:person.010252015157.28
82 rdf:rest Ne265eda256e142108a65982a8113a14f
83 N3c4616a7ec4e4f6e8938c42fe0fd8cd1 schema:name doi
84 schema:value 10.1007/978-3-030-77641-1_3
85 rdf:type schema:PropertyValue
86 N5b84b1315d774086bd90bcd657501b3d rdf:first Naa79a4d181a04d7ca3001698c5937edb
87 rdf:rest Ne6058322a8a34d81bcf1cced49b200d6
88 N6f001371decf440c8674c11146bf92d6 schema:isbn 978-3-030-77640-4
89 978-3-030-77641-1
90 schema:name High-Entropy Materials: Theory, Experiments, and Applications
91 rdf:type schema:Book
92 Na906c02055684cdb802a8b4042034b41 schema:name dimensions_id
93 schema:value pub.1144363577
94 rdf:type schema:PropertyValue
95 Naa79a4d181a04d7ca3001698c5937edb schema:familyName Brechtl
96 schema:givenName Jamieson
97 rdf:type schema:Person
98 Nc2062969a8c04887a2099034d9f2415e schema:familyName Liaw
99 schema:givenName Peter K.
100 rdf:type schema:Person
101 Nc478dc10f6bb47cda7e9b3a232cb5f6c schema:name Springer Nature
102 rdf:type schema:Organisation
103 Nc7d938de314e403299e8ea6bdffc73ed schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Ne265eda256e142108a65982a8113a14f rdf:first sg:person.07715562503.25
106 rdf:rest Ne5eba781e08840ebbe6e5ba9ddb2acdc
107 Ne5eba781e08840ebbe6e5ba9ddb2acdc rdf:first sg:person.010077464334.56
108 rdf:rest rdf:nil
109 Ne6058322a8a34d81bcf1cced49b200d6 rdf:first Nc2062969a8c04887a2099034d9f2415e
110 rdf:rest rdf:nil
111 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
112 schema:name Engineering
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
115 schema:name Materials Engineering
116 rdf:type schema:DefinedTerm
117 sg:person.010077464334.56 schema:affiliation grid-institutes:grid.27755.32
118 schema:familyName Cheung
119 schema:givenName Andrew M.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077464334.56
121 rdf:type schema:Person
122 sg:person.010252015157.28 schema:affiliation grid-institutes:grid.27755.32
123 schema:familyName Poon
124 schema:givenName S. Joseph
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28
126 rdf:type schema:Person
127 sg:person.07715562503.25 schema:affiliation grid-institutes:grid.27755.32
128 schema:familyName Qi
129 schema:givenName Jie
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715562503.25
131 rdf:type schema:Person
132 grid-institutes:grid.27755.32 schema:alternateName Department of Physics, University of Virginia, Charlottesville, VA, USA
133 Engineering Physics, University of Virginia, Charlottesville, VA, USA
134 schema:name Department of Physics, University of Virginia, Charlottesville, VA, USA
135 Engineering Physics, University of Virginia, Charlottesville, VA, USA
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...