Ontology-Based Map Data Quality Assurance View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2021-05-31

AUTHORS

Haonan Qiu , Adel Ayara , Birte Glimm

ABSTRACT

A lane-level, high-definition (HD) digital map is needed for autonomous cars to provide safety and security to the passengers. However, it continues to prove very difficult to produce error-free maps. To avoid the deactivation of autonomous driving (AD) mode caused by map errors, ensuring map data quality is a crucial task. We propose an ontology-based workflow for HD map data quality assurance, including semantic enrichment, violation detection, and violation handling. Evaluations show that our approach can successfully check the quality of map data and suggests that violation handling is even feasible on-the-fly in the car (on-board), avoiding the autonomous driving mode’s deactivation. More... »

PAGES

73-89

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-77385-4_5

DOI

http://dx.doi.org/10.1007/978-3-030-77385-4_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1138468585


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Artificial Intelligence, University of Ulm, Ulm, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "BMW Car IT GmbH, Ulm, Germany", 
            "Institute of Artificial Intelligence, University of Ulm, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "Haonan", 
        "id": "sg:person.016151115273.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016151115273.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "BMW Car IT GmbH, Ulm, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "BMW Car IT GmbH, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ayara", 
        "givenName": "Adel", 
        "id": "sg:person.013231326473.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013231326473.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Artificial Intelligence, University of Ulm, Ulm, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Artificial Intelligence, University of Ulm, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glimm", 
        "givenName": "Birte", 
        "id": "sg:person.015234565343.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015234565343.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-05-31", 
    "datePublishedReg": "2021-05-31", 
    "description": "A lane-level, high-definition (HD) digital map is needed for autonomous cars to provide safety and security to the passengers. However, it continues to prove very difficult to produce error-free maps. To avoid the deactivation of autonomous driving (AD) mode caused by map errors, ensuring map data quality is a crucial task. We propose an ontology-based workflow for HD map data quality assurance, including semantic enrichment, violation detection, and violation handling. Evaluations show that our approach can successfully check the quality of map data and suggests that violation handling is even feasible on-the-fly in the car (on-board), avoiding the autonomous driving mode\u2019s deactivation.", 
    "editor": [
      {
        "familyName": "Verborgh", 
        "givenName": "Ruben", 
        "type": "Person"
      }, 
      {
        "familyName": "Hose", 
        "givenName": "Katja", 
        "type": "Person"
      }, 
      {
        "familyName": "Paulheim", 
        "givenName": "Heiko", 
        "type": "Person"
      }, 
      {
        "familyName": "Champin", 
        "givenName": "Pierre-Antoine", 
        "type": "Person"
      }, 
      {
        "familyName": "Maleshkova", 
        "givenName": "Maria", 
        "type": "Person"
      }, 
      {
        "familyName": "Corcho", 
        "givenName": "Oscar", 
        "type": "Person"
      }, 
      {
        "familyName": "Ristoski", 
        "givenName": "Petar", 
        "type": "Person"
      }, 
      {
        "familyName": "Alam", 
        "givenName": "Mehwish", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-77385-4_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-77384-7", 
        "978-3-030-77385-4"
      ], 
      "name": "The Semantic Web", 
      "type": "Book"
    }, 
    "keywords": [
      "data quality assurance", 
      "violation handling", 
      "high-definition digital maps", 
      "autonomous driving mode", 
      "semantic enrichment", 
      "violation detection", 
      "autonomous cars", 
      "crucial task", 
      "digital maps", 
      "map data", 
      "map errors", 
      "data quality", 
      "quality assurance", 
      "ontology", 
      "assurance", 
      "mode deactivation", 
      "cars", 
      "security", 
      "workflow", 
      "task", 
      "maps", 
      "driving modes", 
      "handling", 
      "quality", 
      "passengers", 
      "detection", 
      "error", 
      "data", 
      "flies", 
      "evaluation", 
      "safety", 
      "mode", 
      "enrichment", 
      "deactivation", 
      "approach"
    ], 
    "name": "Ontology-Based Map Data Quality Assurance", 
    "pagination": "73-89", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1138468585"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-77385-4_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-77385-4_5", 
      "https://app.dimensions.ai/details/publication/pub.1138468585"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_376.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-77385-4_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-77385-4_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-77385-4_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-77385-4_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-77385-4_5'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      23 PREDICATES      61 URIs      53 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-77385-4_5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author Necec908951aa4d358f31ddfe7e4edc49
5 schema:datePublished 2021-05-31
6 schema:datePublishedReg 2021-05-31
7 schema:description A lane-level, high-definition (HD) digital map is needed for autonomous cars to provide safety and security to the passengers. However, it continues to prove very difficult to produce error-free maps. To avoid the deactivation of autonomous driving (AD) mode caused by map errors, ensuring map data quality is a crucial task. We propose an ontology-based workflow for HD map data quality assurance, including semantic enrichment, violation detection, and violation handling. Evaluations show that our approach can successfully check the quality of map data and suggests that violation handling is even feasible on-the-fly in the car (on-board), avoiding the autonomous driving mode’s deactivation.
8 schema:editor N166e6af0018a4e40ae9f23039c566ee2
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N9740af52479e46e5b9e5a16c50a2c4e1
13 schema:keywords approach
14 assurance
15 autonomous cars
16 autonomous driving mode
17 cars
18 crucial task
19 data
20 data quality
21 data quality assurance
22 deactivation
23 detection
24 digital maps
25 driving modes
26 enrichment
27 error
28 evaluation
29 flies
30 handling
31 high-definition digital maps
32 map data
33 map errors
34 maps
35 mode
36 mode deactivation
37 ontology
38 passengers
39 quality
40 quality assurance
41 safety
42 security
43 semantic enrichment
44 task
45 violation detection
46 violation handling
47 workflow
48 schema:name Ontology-Based Map Data Quality Assurance
49 schema:pagination 73-89
50 schema:productId N6a7c4772ddcf493bb2933c6c437b0492
51 N9046b27fdfda465ab129ac048f7f8253
52 schema:publisher N241846f3d3a74951ad22e42d3985cfcd
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138468585
54 https://doi.org/10.1007/978-3-030-77385-4_5
55 schema:sdDatePublished 2022-06-01T22:33
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nfc4f4a0c3f2848f4a34d2cb0e02acb93
58 schema:url https://doi.org/10.1007/978-3-030-77385-4_5
59 sgo:license sg:explorer/license/
60 sgo:sdDataset chapters
61 rdf:type schema:Chapter
62 N0aa29a911f1a4333b36b6af06357c077 schema:familyName Maleshkova
63 schema:givenName Maria
64 rdf:type schema:Person
65 N14fcecafe2cd47a0934325e0b6644b75 rdf:first Nab73f2b290c142c294de1772de7fee67
66 rdf:rest N43acfd696602417cacaf82bff2fad793
67 N166e6af0018a4e40ae9f23039c566ee2 rdf:first Nc48888006c9b4bfd866b0fe45c95894b
68 rdf:rest Nb511859e15024e70b88b54666d6494b8
69 N1c80366d1ca047e99f1ec7be8e6daad1 rdf:first N846c299e983f4543adeb52d981052ecc
70 rdf:rest N4f2d5fb2dbd244a99cb8f580d5ceab34
71 N241846f3d3a74951ad22e42d3985cfcd schema:name Springer Nature
72 rdf:type schema:Organisation
73 N31797b1a5ee04472bd2d1eb7a6b2cf79 schema:familyName Champin
74 schema:givenName Pierre-Antoine
75 rdf:type schema:Person
76 N3914ddd38ee54adaa3b332d77660259e rdf:first N710693fbc61d41219a56d2fbb5dd65d3
77 rdf:rest rdf:nil
78 N43acfd696602417cacaf82bff2fad793 rdf:first N31797b1a5ee04472bd2d1eb7a6b2cf79
79 rdf:rest Nece9d0f046c54e888c4294faadfddb75
80 N43c3b9e7d0164b9a8f8d29fff70eb27c rdf:first sg:person.013231326473.49
81 rdf:rest Na2e0c7a2d6bd4cbebedabed13fe079f2
82 N4f2d5fb2dbd244a99cb8f580d5ceab34 rdf:first N74d007f4f4e8444588c9b9ab07189117
83 rdf:rest N3914ddd38ee54adaa3b332d77660259e
84 N6a7c4772ddcf493bb2933c6c437b0492 schema:name dimensions_id
85 schema:value pub.1138468585
86 rdf:type schema:PropertyValue
87 N710693fbc61d41219a56d2fbb5dd65d3 schema:familyName Alam
88 schema:givenName Mehwish
89 rdf:type schema:Person
90 N74d007f4f4e8444588c9b9ab07189117 schema:familyName Ristoski
91 schema:givenName Petar
92 rdf:type schema:Person
93 N846c299e983f4543adeb52d981052ecc schema:familyName Corcho
94 schema:givenName Oscar
95 rdf:type schema:Person
96 N9046b27fdfda465ab129ac048f7f8253 schema:name doi
97 schema:value 10.1007/978-3-030-77385-4_5
98 rdf:type schema:PropertyValue
99 N9740af52479e46e5b9e5a16c50a2c4e1 schema:isbn 978-3-030-77384-7
100 978-3-030-77385-4
101 schema:name The Semantic Web
102 rdf:type schema:Book
103 Na2e0c7a2d6bd4cbebedabed13fe079f2 rdf:first sg:person.015234565343.35
104 rdf:rest rdf:nil
105 Nab73f2b290c142c294de1772de7fee67 schema:familyName Paulheim
106 schema:givenName Heiko
107 rdf:type schema:Person
108 Nb511859e15024e70b88b54666d6494b8 rdf:first Ncf8102dcbced4493ae1f9f8dfe74392a
109 rdf:rest N14fcecafe2cd47a0934325e0b6644b75
110 Nc48888006c9b4bfd866b0fe45c95894b schema:familyName Verborgh
111 schema:givenName Ruben
112 rdf:type schema:Person
113 Ncf8102dcbced4493ae1f9f8dfe74392a schema:familyName Hose
114 schema:givenName Katja
115 rdf:type schema:Person
116 Nece9d0f046c54e888c4294faadfddb75 rdf:first N0aa29a911f1a4333b36b6af06357c077
117 rdf:rest N1c80366d1ca047e99f1ec7be8e6daad1
118 Necec908951aa4d358f31ddfe7e4edc49 rdf:first sg:person.016151115273.20
119 rdf:rest N43c3b9e7d0164b9a8f8d29fff70eb27c
120 Nfc4f4a0c3f2848f4a34d2cb0e02acb93 schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
123 schema:name Information and Computing Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
126 schema:name Artificial Intelligence and Image Processing
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
129 schema:name Information Systems
130 rdf:type schema:DefinedTerm
131 sg:person.013231326473.49 schema:affiliation grid-institutes:None
132 schema:familyName Ayara
133 schema:givenName Adel
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013231326473.49
135 rdf:type schema:Person
136 sg:person.015234565343.35 schema:affiliation grid-institutes:grid.6582.9
137 schema:familyName Glimm
138 schema:givenName Birte
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015234565343.35
140 rdf:type schema:Person
141 sg:person.016151115273.20 schema:affiliation grid-institutes:grid.6582.9
142 schema:familyName Qiu
143 schema:givenName Haonan
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016151115273.20
145 rdf:type schema:Person
146 grid-institutes:None schema:alternateName BMW Car IT GmbH, Ulm, Germany
147 schema:name BMW Car IT GmbH, Ulm, Germany
148 rdf:type schema:Organization
149 grid-institutes:grid.6582.9 schema:alternateName Institute of Artificial Intelligence, University of Ulm, Ulm, Germany
150 schema:name BMW Car IT GmbH, Ulm, Germany
151 Institute of Artificial Intelligence, University of Ulm, Ulm, Germany
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...