Parallelised ABox Reasoning and Query Answering with Expressive Description Logics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2021-05-31

AUTHORS

Andreas Steigmiller , Birte Glimm

ABSTRACT

Automated reasoning support is an important aspect of logic-based knowledge representation. The development of specialised procedures and sophisticated optimisation techniques significantly improved the performance even for complex reasoning tasks such as conjunctive query answering. Reasoning and query answering over knowledge bases with a large number of facts and expressive schemata remains, however, challenging.We propose a novel approach where the reasoning over assertional knowledge is split into small, similarly sized work packages to enable a parallelised processing with tableau algorithms, which are dominantly used for reasoning with more expressive Description Logics. To retain completeness in the presence of expressive schemata, we propose a specifically designed cache that allows for controlling and synchronising the interaction between the constructed partial models. We further report on encouraging performance improvements for the implementation of the techniques in the tableau-based reasoning system Konclude. More... »

PAGES

23-39

Book

TITLE

The Semantic Web

ISBN

978-3-030-77384-7
978-3-030-77385-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-77385-4_2

DOI

http://dx.doi.org/10.1007/978-3-030-77385-4_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1138468558


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ulm University, Ulm, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Ulm University, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steigmiller", 
        "givenName": "Andreas", 
        "id": "sg:person.013641624343.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013641624343.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ulm University, Ulm, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Ulm University, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glimm", 
        "givenName": "Birte", 
        "id": "sg:person.015234565343.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015234565343.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-05-31", 
    "datePublishedReg": "2021-05-31", 
    "description": "Automated reasoning support is an important aspect of logic-based knowledge representation. The development of specialised procedures and sophisticated optimisation techniques significantly improved the performance even for complex reasoning tasks such as conjunctive query answering. Reasoning and query answering over knowledge bases with a large number of facts and expressive schemata remains, however, challenging.We propose a novel approach where the reasoning over assertional knowledge is split into small, similarly sized work packages to enable a parallelised processing with tableau algorithms, which are dominantly used for reasoning with more expressive Description Logics. To retain completeness in the presence of expressive schemata, we propose a specifically designed cache that allows for controlling and synchronising the interaction between the constructed partial models. We further report on encouraging performance improvements for the implementation of the techniques in the tableau-based reasoning system Konclude.", 
    "editor": [
      {
        "familyName": "Verborgh", 
        "givenName": "Ruben", 
        "type": "Person"
      }, 
      {
        "familyName": "Hose", 
        "givenName": "Katja", 
        "type": "Person"
      }, 
      {
        "familyName": "Paulheim", 
        "givenName": "Heiko", 
        "type": "Person"
      }, 
      {
        "familyName": "Champin", 
        "givenName": "Pierre-Antoine", 
        "type": "Person"
      }, 
      {
        "familyName": "Maleshkova", 
        "givenName": "Maria", 
        "type": "Person"
      }, 
      {
        "familyName": "Corcho", 
        "givenName": "Oscar", 
        "type": "Person"
      }, 
      {
        "familyName": "Ristoski", 
        "givenName": "Petar", 
        "type": "Person"
      }, 
      {
        "familyName": "Alam", 
        "givenName": "Mehwish", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-77385-4_2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-77384-7", 
        "978-3-030-77385-4"
      ], 
      "name": "The Semantic Web", 
      "type": "Book"
    }, 
    "keywords": [
      "expressive description logics", 
      "description logics", 
      "logic-based knowledge representation", 
      "complex reasoning tasks", 
      "sophisticated optimization techniques", 
      "expressive schemas", 
      "query answering", 
      "conjunctive queries", 
      "reasoning support", 
      "ABox reasoning", 
      "knowledge representation", 
      "assertional knowledge", 
      "knowledge bases", 
      "tableau algorithm", 
      "queries", 
      "optimization techniques", 
      "performance improvement", 
      "reasoning tasks", 
      "partial models", 
      "novel approach", 
      "reasoning", 
      "logic", 
      "work packages", 
      "large number", 
      "Answering", 
      "cache", 
      "algorithm", 
      "schema", 
      "important aspect", 
      "task", 
      "specialised procedures", 
      "implementation", 
      "technique", 
      "representation", 
      "processing", 
      "package", 
      "performance", 
      "completeness", 
      "knowledge", 
      "model", 
      "support", 
      "aspects", 
      "improvement", 
      "number", 
      "development", 
      "fact", 
      "basis", 
      "interaction", 
      "procedure", 
      "approach", 
      "presence", 
      "remains"
    ], 
    "name": "Parallelised ABox Reasoning and Query Answering with Expressive Description Logics", 
    "pagination": "23-39", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1138468558"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-77385-4_2"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-77385-4_2", 
      "https://app.dimensions.ai/details/publication/pub.1138468558"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_259.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-77385-4_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-77385-4_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-77385-4_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-77385-4_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-77385-4_2'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      23 PREDICATES      77 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-77385-4_2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf96d988e55e34d79a37a93be0fa7d55e
4 schema:datePublished 2021-05-31
5 schema:datePublishedReg 2021-05-31
6 schema:description Automated reasoning support is an important aspect of logic-based knowledge representation. The development of specialised procedures and sophisticated optimisation techniques significantly improved the performance even for complex reasoning tasks such as conjunctive query answering. Reasoning and query answering over knowledge bases with a large number of facts and expressive schemata remains, however, challenging.We propose a novel approach where the reasoning over assertional knowledge is split into small, similarly sized work packages to enable a parallelised processing with tableau algorithms, which are dominantly used for reasoning with more expressive Description Logics. To retain completeness in the presence of expressive schemata, we propose a specifically designed cache that allows for controlling and synchronising the interaction between the constructed partial models. We further report on encouraging performance improvements for the implementation of the techniques in the tableau-based reasoning system Konclude.
7 schema:editor Nc1931647c2864ec1b8a82aa351271281
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nd9b224458a9d42b7bb440c76b21793fc
12 schema:keywords ABox reasoning
13 Answering
14 algorithm
15 approach
16 aspects
17 assertional knowledge
18 basis
19 cache
20 completeness
21 complex reasoning tasks
22 conjunctive queries
23 description logics
24 development
25 expressive description logics
26 expressive schemas
27 fact
28 implementation
29 important aspect
30 improvement
31 interaction
32 knowledge
33 knowledge bases
34 knowledge representation
35 large number
36 logic
37 logic-based knowledge representation
38 model
39 novel approach
40 number
41 optimization techniques
42 package
43 partial models
44 performance
45 performance improvement
46 presence
47 procedure
48 processing
49 queries
50 query answering
51 reasoning
52 reasoning support
53 reasoning tasks
54 remains
55 representation
56 schema
57 sophisticated optimization techniques
58 specialised procedures
59 support
60 tableau algorithm
61 task
62 technique
63 work packages
64 schema:name Parallelised ABox Reasoning and Query Answering with Expressive Description Logics
65 schema:pagination 23-39
66 schema:productId N27c218a27ceb4a38bfca0190d8c2faad
67 Nb68518088dd0456093f815fc9b78d53c
68 schema:publisher N81dabb01015c416d8fd2f0548e8e5263
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138468558
70 https://doi.org/10.1007/978-3-030-77385-4_2
71 schema:sdDatePublished 2022-06-01T22:30
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N54a10599be0b4701bef21c5b846f60e7
74 schema:url https://doi.org/10.1007/978-3-030-77385-4_2
75 sgo:license sg:explorer/license/
76 sgo:sdDataset chapters
77 rdf:type schema:Chapter
78 N11f84d41ea8a4c1dbe220a4d31245868 schema:familyName Corcho
79 schema:givenName Oscar
80 rdf:type schema:Person
81 N1a294a2cfc444e15bdc9ebc730e3b191 rdf:first Nfdc1e54bdf7f474698154a7fbde208a5
82 rdf:rest Nb403d5de11954254a5755e2023ca30fb
83 N2056aa2a17d749f8b177dcc86f0cdcde schema:familyName Hose
84 schema:givenName Katja
85 rdf:type schema:Person
86 N27c218a27ceb4a38bfca0190d8c2faad schema:name doi
87 schema:value 10.1007/978-3-030-77385-4_2
88 rdf:type schema:PropertyValue
89 N44a42e5a077b41678cf224883448911f rdf:first N2056aa2a17d749f8b177dcc86f0cdcde
90 rdf:rest N5b49be69d078458b9aef2ea79ea164d5
91 N54a10599be0b4701bef21c5b846f60e7 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N5b24f22aecb543ae9cb435d241db1768 schema:familyName Alam
94 schema:givenName Mehwish
95 rdf:type schema:Person
96 N5b49be69d078458b9aef2ea79ea164d5 rdf:first N97cf50b724bf4fb39e58bfaef4d3d17b
97 rdf:rest N98abe68dfe0a49aca03dfbe5183bf4ce
98 N81dabb01015c416d8fd2f0548e8e5263 schema:name Springer Nature
99 rdf:type schema:Organisation
100 N841be7689e7b407ab7eb1ff48c5606c0 rdf:first sg:person.015234565343.35
101 rdf:rest rdf:nil
102 N97cf50b724bf4fb39e58bfaef4d3d17b schema:familyName Paulheim
103 schema:givenName Heiko
104 rdf:type schema:Person
105 N98abe68dfe0a49aca03dfbe5183bf4ce rdf:first Ndb1232028a20453b8d9f0236d5bc1fbb
106 rdf:rest Nab721db394f74211bfc136a773df4b94
107 N9919e77a3fb347be9d54c1f34105b69e schema:familyName Maleshkova
108 schema:givenName Maria
109 rdf:type schema:Person
110 Nab721db394f74211bfc136a773df4b94 rdf:first N9919e77a3fb347be9d54c1f34105b69e
111 rdf:rest Nf82c1dd2c9f2427f85dd5557705ec5b2
112 Nb403d5de11954254a5755e2023ca30fb rdf:first N5b24f22aecb543ae9cb435d241db1768
113 rdf:rest rdf:nil
114 Nb68518088dd0456093f815fc9b78d53c schema:name dimensions_id
115 schema:value pub.1138468558
116 rdf:type schema:PropertyValue
117 Nc1931647c2864ec1b8a82aa351271281 rdf:first Nd679caf2bc1448fdba226211374b7e1b
118 rdf:rest N44a42e5a077b41678cf224883448911f
119 Nd679caf2bc1448fdba226211374b7e1b schema:familyName Verborgh
120 schema:givenName Ruben
121 rdf:type schema:Person
122 Nd9b224458a9d42b7bb440c76b21793fc schema:isbn 978-3-030-77384-7
123 978-3-030-77385-4
124 schema:name The Semantic Web
125 rdf:type schema:Book
126 Ndb1232028a20453b8d9f0236d5bc1fbb schema:familyName Champin
127 schema:givenName Pierre-Antoine
128 rdf:type schema:Person
129 Nf82c1dd2c9f2427f85dd5557705ec5b2 rdf:first N11f84d41ea8a4c1dbe220a4d31245868
130 rdf:rest N1a294a2cfc444e15bdc9ebc730e3b191
131 Nf96d988e55e34d79a37a93be0fa7d55e rdf:first sg:person.013641624343.88
132 rdf:rest N841be7689e7b407ab7eb1ff48c5606c0
133 Nfdc1e54bdf7f474698154a7fbde208a5 schema:familyName Ristoski
134 schema:givenName Petar
135 rdf:type schema:Person
136 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
137 schema:name Information and Computing Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
140 schema:name Artificial Intelligence and Image Processing
141 rdf:type schema:DefinedTerm
142 sg:person.013641624343.88 schema:affiliation grid-institutes:grid.6582.9
143 schema:familyName Steigmiller
144 schema:givenName Andreas
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013641624343.88
146 rdf:type schema:Person
147 sg:person.015234565343.35 schema:affiliation grid-institutes:grid.6582.9
148 schema:familyName Glimm
149 schema:givenName Birte
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015234565343.35
151 rdf:type schema:Person
152 grid-institutes:grid.6582.9 schema:alternateName Ulm University, Ulm, Germany
153 schema:name Ulm University, Ulm, Germany
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...