Where the Local Search Affects Best in an Immune Algorithm View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2021-05-22

AUTHORS

Rocco A. Scollo , Vincenzo Cutello , Mario Pavone

ABSTRACT

Hybrid algorithms are powerful search algorithms obtained by the combination of metaheuristics with other optimization techniques, although the most common hybridization is to apply a local solver method within evolutionary computation algorithms. In many published works in the literature, such local solver is run in different ways, sometimes acting on the perturbed elements and other on the best ones, and this raises the question of when it is best to run the local solver and on which elements it acts best in order to improve the reliability of the algorithm. Thus, three different ways of running local search in an immune algorithm have been investigated, and well-known community detection was considered as test-problem. The three methods analyzed have been assessed with respect their effect on the performances in term of quality solution found and information gained. More... »

PAGES

99-114

Book

TITLE

AIxIA 2020 – Advances in Artificial Intelligence

ISBN

978-3-030-77090-7
978-3-030-77091-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-77091-4_7

DOI

http://dx.doi.org/10.1007/978-3-030-77091-4_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1138244396


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scollo", 
        "givenName": "Rocco A.", 
        "id": "sg:person.016661443761.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661443761.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cutello", 
        "givenName": "Vincenzo", 
        "id": "sg:person.013504603243.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013504603243.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pavone", 
        "givenName": "Mario", 
        "id": "sg:person.07350620665.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350620665.82"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-05-22", 
    "datePublishedReg": "2021-05-22", 
    "description": "Hybrid algorithms are powerful search algorithms obtained by the combination of metaheuristics with other optimization techniques, although the most common hybridization is to apply a local solver method within evolutionary computation algorithms. In many published works in the literature, such local solver is run in different ways, sometimes acting on the perturbed elements and other on the best ones, and this raises the question of when it is best to run the local solver and on which elements it acts best in order to improve the reliability of the algorithm. Thus, three different ways of running local search in an immune algorithm have been investigated, and well-known community detection was considered as test-problem. The three methods analyzed have been assessed with respect their effect on the performances in term of quality solution found and information gained.", 
    "editor": [
      {
        "familyName": "Baldoni", 
        "givenName": "Matteo", 
        "type": "Person"
      }, 
      {
        "familyName": "Bandini", 
        "givenName": "Stefania", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-77091-4_7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-77090-7", 
        "978-3-030-77091-4"
      ], 
      "name": "AIxIA 2020 \u2013 Advances in Artificial Intelligence", 
      "type": "Book"
    }, 
    "keywords": [
      "local search", 
      "evolutionary computation algorithms", 
      "immune algorithm", 
      "powerful search algorithm", 
      "combination of metaheuristics", 
      "local solver", 
      "community detection", 
      "search algorithm", 
      "quality solutions", 
      "computation algorithm", 
      "hybrid algorithm", 
      "algorithm", 
      "optimization techniques", 
      "solver method", 
      "best one", 
      "solver", 
      "metaheuristics", 
      "different ways", 
      "search", 
      "information", 
      "way", 
      "performance", 
      "method", 
      "reliability", 
      "detection", 
      "technique", 
      "solution", 
      "work", 
      "order", 
      "elements", 
      "one", 
      "terms", 
      "respect", 
      "combination", 
      "literature", 
      "questions", 
      "effect", 
      "hybridization", 
      "perturbed elements", 
      "common hybridization", 
      "local solver method", 
      "such local solver"
    ], 
    "name": "Where the Local Search Affects Best in an Immune Algorithm", 
    "pagination": "99-114", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1138244396"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-77091-4_7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-77091-4_7", 
      "https://app.dimensions.ai/details/publication/pub.1138244396"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_53.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-77091-4_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-77091-4_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-77091-4_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-77091-4_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-77091-4_7'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      23 PREDICATES      67 URIs      60 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-77091-4_7 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N698f2a3c5e7744449dac047110fab41b
4 schema:datePublished 2021-05-22
5 schema:datePublishedReg 2021-05-22
6 schema:description Hybrid algorithms are powerful search algorithms obtained by the combination of metaheuristics with other optimization techniques, although the most common hybridization is to apply a local solver method within evolutionary computation algorithms. In many published works in the literature, such local solver is run in different ways, sometimes acting on the perturbed elements and other on the best ones, and this raises the question of when it is best to run the local solver and on which elements it acts best in order to improve the reliability of the algorithm. Thus, three different ways of running local search in an immune algorithm have been investigated, and well-known community detection was considered as test-problem. The three methods analyzed have been assessed with respect their effect on the performances in term of quality solution found and information gained.
7 schema:editor N2c8c7308a4c34bcc9c25158348eefc4d
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N7faeb5c55a364352b1a8f4b01792f44e
12 schema:keywords algorithm
13 best one
14 combination
15 combination of metaheuristics
16 common hybridization
17 community detection
18 computation algorithm
19 detection
20 different ways
21 effect
22 elements
23 evolutionary computation algorithms
24 hybrid algorithm
25 hybridization
26 immune algorithm
27 information
28 literature
29 local search
30 local solver
31 local solver method
32 metaheuristics
33 method
34 one
35 optimization techniques
36 order
37 performance
38 perturbed elements
39 powerful search algorithm
40 quality solutions
41 questions
42 reliability
43 respect
44 search
45 search algorithm
46 solution
47 solver
48 solver method
49 such local solver
50 technique
51 terms
52 way
53 work
54 schema:name Where the Local Search Affects Best in an Immune Algorithm
55 schema:pagination 99-114
56 schema:productId N42c48e4457704a37ad13e22db5d46171
57 Nb42a28474f1d4c5a8a19135f9edc3b73
58 schema:publisher N0373236bf099437eb50769bd44505b33
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138244396
60 https://doi.org/10.1007/978-3-030-77091-4_7
61 schema:sdDatePublished 2022-01-01T19:26
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N03f5957ba48d4e9c9fe9c7d4f0f24adb
64 schema:url https://doi.org/10.1007/978-3-030-77091-4_7
65 sgo:license sg:explorer/license/
66 sgo:sdDataset chapters
67 rdf:type schema:Chapter
68 N0373236bf099437eb50769bd44505b33 schema:name Springer Nature
69 rdf:type schema:Organisation
70 N03f5957ba48d4e9c9fe9c7d4f0f24adb schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N05746351f6d7467fabdb36f8cfd4566a rdf:first Nc3f53cbf5c674fe7b84dd620b5f3556c
73 rdf:rest rdf:nil
74 N2c8c7308a4c34bcc9c25158348eefc4d rdf:first N5eb31aa899364397bc946575d0bbf33b
75 rdf:rest N05746351f6d7467fabdb36f8cfd4566a
76 N42c48e4457704a37ad13e22db5d46171 schema:name doi
77 schema:value 10.1007/978-3-030-77091-4_7
78 rdf:type schema:PropertyValue
79 N5eb31aa899364397bc946575d0bbf33b schema:familyName Baldoni
80 schema:givenName Matteo
81 rdf:type schema:Person
82 N698f2a3c5e7744449dac047110fab41b rdf:first sg:person.016661443761.18
83 rdf:rest Nde0ef6b03f704dd3883fef9540a959b0
84 N7faeb5c55a364352b1a8f4b01792f44e schema:isbn 978-3-030-77090-7
85 978-3-030-77091-4
86 schema:name AIxIA 2020 – Advances in Artificial Intelligence
87 rdf:type schema:Book
88 N8882fa476c5c4548be92d3690f4d968c rdf:first sg:person.07350620665.82
89 rdf:rest rdf:nil
90 Nb42a28474f1d4c5a8a19135f9edc3b73 schema:name dimensions_id
91 schema:value pub.1138244396
92 rdf:type schema:PropertyValue
93 Nc3f53cbf5c674fe7b84dd620b5f3556c schema:familyName Bandini
94 schema:givenName Stefania
95 rdf:type schema:Person
96 Nde0ef6b03f704dd3883fef9540a959b0 rdf:first sg:person.013504603243.51
97 rdf:rest N8882fa476c5c4548be92d3690f4d968c
98 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
99 schema:name Information and Computing Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
102 schema:name Computation Theory and Mathematics
103 rdf:type schema:DefinedTerm
104 sg:person.013504603243.51 schema:affiliation grid-institutes:grid.8158.4
105 schema:familyName Cutello
106 schema:givenName Vincenzo
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013504603243.51
108 rdf:type schema:Person
109 sg:person.016661443761.18 schema:affiliation grid-institutes:grid.8158.4
110 schema:familyName Scollo
111 schema:givenName Rocco A.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661443761.18
113 rdf:type schema:Person
114 sg:person.07350620665.82 schema:affiliation grid-institutes:grid.8158.4
115 schema:familyName Pavone
116 schema:givenName Mario
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350620665.82
118 rdf:type schema:Person
119 grid-institutes:grid.8158.4 schema:alternateName Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
120 schema:name Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...