Invariant Aggregation and Pre-aggregation Functions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2021-08-26

AUTHORS

Anna Kolesárová , Radko Mesiar

ABSTRACT

In this contribution, we introduce special transformations of fusion functions closely related to ratio scale, difference scale and interval scale invariant fusion functions. In particular, we show that in the case of aggregation functions the obtained transforms need not be aggregation functions but they are always pre-aggregation functions. We also provide sufficient conditions for constructing aggregation functions which are ratio scale, difference scale or interval scale invariant. We illustrate the obtained results applying the introduced transformations to the basic fuzzy integrals. It is shown that only the Choquet integral is invariant with respect to all studied transformations. More... »

PAGES

15-21

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-74970-5_3

DOI

http://dx.doi.org/10.1007/978-3-030-74970-5_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1140637446


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Slovak University of Technology, Faculty of Chemical and Food Technology, Radlinsk\u00e9ho 9, 812 37, Bratislava, Slovakia", 
          "id": "http://www.grid.ac/institutes/grid.440789.6", 
          "name": [
            "Slovak University of Technology, Faculty of Chemical and Food Technology, Radlinsk\u00e9ho 9, 812 37, Bratislava, Slovakia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koles\u00e1rov\u00e1", 
        "givenName": "Anna", 
        "id": "sg:person.013323425473.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323425473.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Slovak University of Technology, Faculty of Civil Engineering, Radlinsk\u00e9ho 11, 810 05, Bratislava, Slovakia", 
          "id": "http://www.grid.ac/institutes/grid.440789.6", 
          "name": [
            "Slovak University of Technology, Faculty of Civil Engineering, Radlinsk\u00e9ho 11, 810 05, Bratislava, Slovakia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mesiar", 
        "givenName": "Radko", 
        "id": "sg:person.013374353164.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374353164.75"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-08-26", 
    "datePublishedReg": "2021-08-26", 
    "description": "In this contribution, we introduce special transformations of fusion functions closely related to ratio scale, difference scale and interval scale invariant fusion functions. In particular, we show that in the case of aggregation functions the obtained transforms need not be aggregation functions but they are always pre-aggregation functions. We also provide sufficient conditions for constructing aggregation functions which are ratio scale, difference scale or interval scale invariant. We illustrate the obtained results applying the introduced transformations to the basic fuzzy integrals. It is shown that only the Choquet integral is invariant with respect to all studied transformations.", 
    "editor": [
      {
        "familyName": "Harmati", 
        "givenName": "Istv\u00e1n \u00c1.", 
        "type": "Person"
      }, 
      {
        "familyName": "K\u00f3czy", 
        "givenName": "L\u00e1szl\u00f3 T.", 
        "type": "Person"
      }, 
      {
        "familyName": "Medina", 
        "givenName": "Jes\u00fas", 
        "type": "Person"
      }, 
      {
        "familyName": "Ram\u00edrez-Poussa", 
        "givenName": "Elo\u00edsa", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-74970-5_3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-74969-9", 
        "978-3-030-74970-5"
      ], 
      "name": "Computational Intelligence and Mathematics for Tackling Complex Problems 3", 
      "type": "Book"
    }, 
    "keywords": [
      "fusion function", 
      "pre-aggregation functions", 
      "special transformation", 
      "sufficient conditions", 
      "ratio scale", 
      "aggregation functions", 
      "scale invariant", 
      "function", 
      "integrals", 
      "Choquet integral", 
      "fuzzy integral", 
      "aggregation", 
      "invariants", 
      "difference scale", 
      "transformation", 
      "scale", 
      "conditions", 
      "contribution", 
      "transform", 
      "respect", 
      "results", 
      "cases", 
      "interval scale invariant fusion functions", 
      "scale invariant fusion functions", 
      "invariant fusion functions", 
      "interval scale invariant", 
      "basic fuzzy integrals", 
      "Invariant Aggregation"
    ], 
    "name": "Invariant Aggregation and Pre-aggregation Functions", 
    "pagination": "15-21", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1140637446"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-74970-5_3"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-74970-5_3", 
      "https://app.dimensions.ai/details/publication/pub.1140637446"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_93.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-74970-5_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-74970-5_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-74970-5_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-74970-5_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-74970-5_3'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      23 PREDICATES      53 URIs      46 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-74970-5_3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3831f619105b47a7b5faaca9815aae76
4 schema:datePublished 2021-08-26
5 schema:datePublishedReg 2021-08-26
6 schema:description In this contribution, we introduce special transformations of fusion functions closely related to ratio scale, difference scale and interval scale invariant fusion functions. In particular, we show that in the case of aggregation functions the obtained transforms need not be aggregation functions but they are always pre-aggregation functions. We also provide sufficient conditions for constructing aggregation functions which are ratio scale, difference scale or interval scale invariant. We illustrate the obtained results applying the introduced transformations to the basic fuzzy integrals. It is shown that only the Choquet integral is invariant with respect to all studied transformations.
7 schema:editor N49c2e751577f4a6295b11e52fc1573a1
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N4cbfe27e46714daea2668d378666b548
12 schema:keywords Choquet integral
13 Invariant Aggregation
14 aggregation
15 aggregation functions
16 basic fuzzy integrals
17 cases
18 conditions
19 contribution
20 difference scale
21 function
22 fusion function
23 fuzzy integral
24 integrals
25 interval scale invariant
26 interval scale invariant fusion functions
27 invariant fusion functions
28 invariants
29 pre-aggregation functions
30 ratio scale
31 respect
32 results
33 scale
34 scale invariant
35 scale invariant fusion functions
36 special transformation
37 sufficient conditions
38 transform
39 transformation
40 schema:name Invariant Aggregation and Pre-aggregation Functions
41 schema:pagination 15-21
42 schema:productId N3ad04b954a3746bc85ee234a9e3681ac
43 Nc422ad4ba50b4e90816638db772da214
44 schema:publisher N2f9bc4935d76496888b1b3dca93b078b
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140637446
46 https://doi.org/10.1007/978-3-030-74970-5_3
47 schema:sdDatePublished 2022-01-01T19:28
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N096ab90ea4364a50ac1a2b4413e7ae8e
50 schema:url https://doi.org/10.1007/978-3-030-74970-5_3
51 sgo:license sg:explorer/license/
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N096ab90ea4364a50ac1a2b4413e7ae8e schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N2017a145d28c4e5dab79404a1b8c2c79 rdf:first Ncd9e15220094484e8c11c3887872d25d
57 rdf:rest rdf:nil
58 N2f9bc4935d76496888b1b3dca93b078b schema:name Springer Nature
59 rdf:type schema:Organisation
60 N368c3350a59c46638d3785d0c97b33d2 schema:familyName Medina
61 schema:givenName Jesús
62 rdf:type schema:Person
63 N3831f619105b47a7b5faaca9815aae76 rdf:first sg:person.013323425473.28
64 rdf:rest Nee3d6c7dd260479899fc23ef0221af8b
65 N3ad04b954a3746bc85ee234a9e3681ac schema:name dimensions_id
66 schema:value pub.1140637446
67 rdf:type schema:PropertyValue
68 N49c2e751577f4a6295b11e52fc1573a1 rdf:first N5a7b419d04624e0fb8baa2634faf52bb
69 rdf:rest Nd4296a81fc63485cbdcd2ee06b69a19a
70 N4cbfe27e46714daea2668d378666b548 schema:isbn 978-3-030-74969-9
71 978-3-030-74970-5
72 schema:name Computational Intelligence and Mathematics for Tackling Complex Problems 3
73 rdf:type schema:Book
74 N58bb9b7709b44a7a864897dc507ff2ba schema:familyName Kóczy
75 schema:givenName László T.
76 rdf:type schema:Person
77 N5a7b419d04624e0fb8baa2634faf52bb schema:familyName Harmati
78 schema:givenName István Á.
79 rdf:type schema:Person
80 N9a9a269af194487a8926c60bbc3bd880 rdf:first N368c3350a59c46638d3785d0c97b33d2
81 rdf:rest N2017a145d28c4e5dab79404a1b8c2c79
82 Nc422ad4ba50b4e90816638db772da214 schema:name doi
83 schema:value 10.1007/978-3-030-74970-5_3
84 rdf:type schema:PropertyValue
85 Ncd9e15220094484e8c11c3887872d25d schema:familyName Ramírez-Poussa
86 schema:givenName Eloísa
87 rdf:type schema:Person
88 Nd4296a81fc63485cbdcd2ee06b69a19a rdf:first N58bb9b7709b44a7a864897dc507ff2ba
89 rdf:rest N9a9a269af194487a8926c60bbc3bd880
90 Nee3d6c7dd260479899fc23ef0221af8b rdf:first sg:person.013374353164.75
91 rdf:rest rdf:nil
92 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
93 schema:name Mathematical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
96 schema:name Pure Mathematics
97 rdf:type schema:DefinedTerm
98 sg:person.013323425473.28 schema:affiliation grid-institutes:grid.440789.6
99 schema:familyName Kolesárová
100 schema:givenName Anna
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323425473.28
102 rdf:type schema:Person
103 sg:person.013374353164.75 schema:affiliation grid-institutes:grid.440789.6
104 schema:familyName Mesiar
105 schema:givenName Radko
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374353164.75
107 rdf:type schema:Person
108 grid-institutes:grid.440789.6 schema:alternateName Slovak University of Technology, Faculty of Chemical and Food Technology, Radlinského 9, 812 37, Bratislava, Slovakia
109 Slovak University of Technology, Faculty of Civil Engineering, Radlinského 11, 810 05, Bratislava, Slovakia
110 schema:name Slovak University of Technology, Faculty of Chemical and Food Technology, Radlinského 9, 812 37, Bratislava, Slovakia
111 Slovak University of Technology, Faculty of Civil Engineering, Radlinského 11, 810 05, Bratislava, Slovakia
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...