Distance Minimization Problems for Multi-factorial Evolutionary Optimization Benchmarking View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2021-04-17

AUTHORS

Shio Kawakami , Tomoaki Takagi , Keiki Takadama , Hiroyuki Sato

ABSTRACT

This paper proposes multi-factorial distance minimization problems for benchmarking of multi-factorial optimization. The multi-factorial optimization simultaneously searches for optimal solutions of multiple objective functions in the common variable space and is recently a popular issue regarding evolutionary optimization. The conventional multi-factorial benchmark problems combine multiple existing single-objective benchmark problems. However, the correlation degree among their objectives is unclear and there is a lack of scalability in the number of objectives and visual analyzability of the search behavior. In the multi-objective optimization field, the distance minimization problem has been employed due to the scalability in the number of objectives and visual analyzability. In this work, we apply their benefits to the multi-factorial optimization field. We show the search performances and behaviors of the representative multi-factorial evolutionary algorithms on the multi-factorial distance minimization problems when the correlation among objectives and the number of objectives are varied. More... »

PAGES

710-719

Book

TITLE

Hybrid Intelligent Systems

ISBN

978-3-030-73049-9
978-3-030-73050-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-73050-5_69

DOI

http://dx.doi.org/10.1007/978-3-030-73050-5_69

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1137257424


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawakami", 
        "givenName": "Shio", 
        "id": "sg:person.012202401617.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012202401617.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takagi", 
        "givenName": "Tomoaki", 
        "id": "sg:person.015022623513.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022623513.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takadama", 
        "givenName": "Keiki", 
        "id": "sg:person.012774267611.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774267611.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sato", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.07750750604.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-04-17", 
    "datePublishedReg": "2021-04-17", 
    "description": "This paper proposes multi-factorial distance minimization problems for benchmarking of multi-factorial optimization. The multi-factorial optimization simultaneously searches for optimal solutions of multiple objective functions in the common variable space and is recently a popular issue regarding evolutionary optimization. The conventional multi-factorial benchmark problems combine multiple existing single-objective benchmark problems. However, the correlation degree among their objectives is unclear and there is a lack of scalability in the number of objectives and visual analyzability of the search behavior. In the multi-objective optimization field, the distance minimization problem has been employed due to the scalability in the number of objectives and visual analyzability. In this work, we apply their benefits to the multi-factorial optimization field. We show the search performances and behaviors of the representative multi-factorial evolutionary algorithms on the multi-factorial distance minimization problems when the correlation among objectives and the number of objectives are varied.", 
    "editor": [
      {
        "familyName": "Abraham", 
        "givenName": "Ajith", 
        "type": "Person"
      }, 
      {
        "familyName": "Hanne", 
        "givenName": "Thomas", 
        "type": "Person"
      }, 
      {
        "familyName": "Castillo", 
        "givenName": "Oscar", 
        "type": "Person"
      }, 
      {
        "familyName": "Gandhi", 
        "givenName": "Niketa", 
        "type": "Person"
      }, 
      {
        "familyName": "Nogueira Rios", 
        "givenName": "Tatiane", 
        "type": "Person"
      }, 
      {
        "familyName": "Hong", 
        "givenName": "Tzung-Pei", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-73050-5_69", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-73049-9", 
        "978-3-030-73050-5"
      ], 
      "name": "Hybrid Intelligent Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "distance minimization problem", 
      "number of objectives", 
      "minimization problem", 
      "optimization field", 
      "benchmark problems", 
      "multi-objective optimization field", 
      "multi-factorial evolutionary algorithm", 
      "multiple objective functions", 
      "variable space", 
      "optimal solution", 
      "evolutionary optimization", 
      "objective function", 
      "evolutionary algorithm", 
      "lack of scalability", 
      "optimization", 
      "search performance", 
      "problem", 
      "search behavior", 
      "popular issue", 
      "scalability", 
      "analyzability", 
      "field", 
      "correlation degree", 
      "space", 
      "algorithm", 
      "benchmarking", 
      "solution", 
      "number", 
      "behavior", 
      "function", 
      "performance", 
      "objective", 
      "issues", 
      "work", 
      "degree", 
      "benefits", 
      "correlation", 
      "lack", 
      "paper"
    ], 
    "name": "Distance Minimization Problems for Multi-factorial Evolutionary Optimization Benchmarking", 
    "pagination": "710-719", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1137257424"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-73050-5_69"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-73050-5_69", 
      "https://app.dimensions.ai/details/publication/pub.1137257424"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_220.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-73050-5_69"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-73050-5_69'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-73050-5_69'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-73050-5_69'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-73050-5_69'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      23 PREDICATES      64 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-73050-5_69 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N5910b6cb2f6c47f48e2904219987a334
4 schema:datePublished 2021-04-17
5 schema:datePublishedReg 2021-04-17
6 schema:description This paper proposes multi-factorial distance minimization problems for benchmarking of multi-factorial optimization. The multi-factorial optimization simultaneously searches for optimal solutions of multiple objective functions in the common variable space and is recently a popular issue regarding evolutionary optimization. The conventional multi-factorial benchmark problems combine multiple existing single-objective benchmark problems. However, the correlation degree among their objectives is unclear and there is a lack of scalability in the number of objectives and visual analyzability of the search behavior. In the multi-objective optimization field, the distance minimization problem has been employed due to the scalability in the number of objectives and visual analyzability. In this work, we apply their benefits to the multi-factorial optimization field. We show the search performances and behaviors of the representative multi-factorial evolutionary algorithms on the multi-factorial distance minimization problems when the correlation among objectives and the number of objectives are varied.
7 schema:editor Nb611d9ceb3024709b4b659c59188c607
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nfc0fea52edf2451c9dc029ab8aa460c5
12 schema:keywords algorithm
13 analyzability
14 behavior
15 benchmark problems
16 benchmarking
17 benefits
18 correlation
19 correlation degree
20 degree
21 distance minimization problem
22 evolutionary algorithm
23 evolutionary optimization
24 field
25 function
26 issues
27 lack
28 lack of scalability
29 minimization problem
30 multi-factorial evolutionary algorithm
31 multi-objective optimization field
32 multiple objective functions
33 number
34 number of objectives
35 objective
36 objective function
37 optimal solution
38 optimization
39 optimization field
40 paper
41 performance
42 popular issue
43 problem
44 scalability
45 search behavior
46 search performance
47 solution
48 space
49 variable space
50 work
51 schema:name Distance Minimization Problems for Multi-factorial Evolutionary Optimization Benchmarking
52 schema:pagination 710-719
53 schema:productId N141db218cd104d4591e17fa911e0d661
54 N571a6b8364e346fcbc2987b4be4ddfc6
55 schema:publisher N14fcd52d90db4943a60f86b8ac9ab81c
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137257424
57 https://doi.org/10.1007/978-3-030-73050-5_69
58 schema:sdDatePublished 2022-05-10T10:42
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N580c5ec2ef23484baf76328d424ebdfa
61 schema:url https://doi.org/10.1007/978-3-030-73050-5_69
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N02fbbfe308424b87aaec8fde06577ab9 rdf:first sg:person.07750750604.05
66 rdf:rest rdf:nil
67 N141db218cd104d4591e17fa911e0d661 schema:name doi
68 schema:value 10.1007/978-3-030-73050-5_69
69 rdf:type schema:PropertyValue
70 N14fcd52d90db4943a60f86b8ac9ab81c schema:name Springer Nature
71 rdf:type schema:Organisation
72 N2f80209d9b44461ebf8abb7c09cc3e07 rdf:first sg:person.012774267611.99
73 rdf:rest N02fbbfe308424b87aaec8fde06577ab9
74 N463159a381e54561962305b3756dda91 rdf:first N5ddc82c9ec74449fa08ca9cbaead47a7
75 rdf:rest N5cf57b80e12d4d8898404ee681ae7aea
76 N5124ff77a12842519e1e5787cb2a8ed0 rdf:first N681142bd0f8f461c8343e345f1a9ad91
77 rdf:rest N463159a381e54561962305b3756dda91
78 N571a6b8364e346fcbc2987b4be4ddfc6 schema:name dimensions_id
79 schema:value pub.1137257424
80 rdf:type schema:PropertyValue
81 N580c5ec2ef23484baf76328d424ebdfa schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N5910b6cb2f6c47f48e2904219987a334 rdf:first sg:person.012202401617.02
84 rdf:rest Nda9370e2d55d49228c831274c6ccabc8
85 N5cf57b80e12d4d8898404ee681ae7aea rdf:first N9c3b7859ba1c44b882bd9a0a5ebc1ac0
86 rdf:rest Na5a36ccc0d194e228dbf1817ff0546bb
87 N5ddc82c9ec74449fa08ca9cbaead47a7 schema:familyName Gandhi
88 schema:givenName Niketa
89 rdf:type schema:Person
90 N60155ee28ceb4cac80993375bddb11bb rdf:first Nd59c8b01434149e7842b963d8581722d
91 rdf:rest N5124ff77a12842519e1e5787cb2a8ed0
92 N681142bd0f8f461c8343e345f1a9ad91 schema:familyName Castillo
93 schema:givenName Oscar
94 rdf:type schema:Person
95 N9c3b7859ba1c44b882bd9a0a5ebc1ac0 schema:familyName Nogueira Rios
96 schema:givenName Tatiane
97 rdf:type schema:Person
98 Na5a36ccc0d194e228dbf1817ff0546bb rdf:first Nad06b9a4b651414384ae915eb506819d
99 rdf:rest rdf:nil
100 Nad06b9a4b651414384ae915eb506819d schema:familyName Hong
101 schema:givenName Tzung-Pei
102 rdf:type schema:Person
103 Nb611d9ceb3024709b4b659c59188c607 rdf:first Neef3125079664f739906cc25dd4f87e4
104 rdf:rest N60155ee28ceb4cac80993375bddb11bb
105 Nd59c8b01434149e7842b963d8581722d schema:familyName Hanne
106 schema:givenName Thomas
107 rdf:type schema:Person
108 Nda9370e2d55d49228c831274c6ccabc8 rdf:first sg:person.015022623513.33
109 rdf:rest N2f80209d9b44461ebf8abb7c09cc3e07
110 Neef3125079664f739906cc25dd4f87e4 schema:familyName Abraham
111 schema:givenName Ajith
112 rdf:type schema:Person
113 Nfc0fea52edf2451c9dc029ab8aa460c5 schema:isbn 978-3-030-73049-9
114 978-3-030-73050-5
115 schema:name Hybrid Intelligent Systems
116 rdf:type schema:Book
117 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
118 schema:name Mathematical Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
121 schema:name Numerical and Computational Mathematics
122 rdf:type schema:DefinedTerm
123 sg:person.012202401617.02 schema:affiliation grid-institutes:grid.266298.1
124 schema:familyName Kawakami
125 schema:givenName Shio
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012202401617.02
127 rdf:type schema:Person
128 sg:person.012774267611.99 schema:affiliation grid-institutes:grid.266298.1
129 schema:familyName Takadama
130 schema:givenName Keiki
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774267611.99
132 rdf:type schema:Person
133 sg:person.015022623513.33 schema:affiliation grid-institutes:grid.266298.1
134 schema:familyName Takagi
135 schema:givenName Tomoaki
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022623513.33
137 rdf:type schema:Person
138 sg:person.07750750604.05 schema:affiliation grid-institutes:grid.266298.1
139 schema:familyName Sato
140 schema:givenName Hiroyuki
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05
142 rdf:type schema:Person
143 grid-institutes:grid.266298.1 schema:alternateName The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan
144 schema:name The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...