Influence of the Temperature on Simulated Annealing Method for Metal Nanoparticle Structures Optimization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2021-04-04

AUTHORS

Rossen Mikhov , Vladimir Myasnichenko , Stefka Fidanova , Leoneed Kirilov , Nickolay Sdobnyakov

ABSTRACT

The description of the mechanisms of formation and dynamics of changes in the internal structure of nanoparticles can allow predicting the properties of these nanoparticles. Despite the modern development of the experimental base and theoretical approaches, certain tasks in the study of structural characteristics, including the search for stable configurations, the description of the criteria for thermal stability, etc., are not being solved. The stable configuration is when the potential energy is minimal. In this paper we apply Simulated Annealing method for metal nanoparticle structures optimization developed earlier by the authors. Successful application of the method depends on algorithm parameters. One of the most important parameters is the value of the initial temperature. According to the literature the initial temperature needs to have a high value. The question is which value is high. A fixed value can be high for some initial data and not high for other. We propose several variants of calculation of the value of initial temperature and study their influence on algorithm performance. More... »

PAGES

278-290

Book

TITLE

Advanced Computing in Industrial Mathematics

ISBN

978-3-030-71615-8
978-3-030-71616-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-71616-5_25

DOI

http://dx.doi.org/10.1007/978-3-030-71616-5_25

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1136907748


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technologies\u2014Bulgarian Academy of Sciences, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424988.b", 
          "name": [
            "Institute of Information and Communication Technologies\u2014Bulgarian Academy of Sciences, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mikhov", 
        "givenName": "Rossen", 
        "id": "sg:person.014434131110.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014434131110.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tver State University, Tver, Russia", 
          "id": "http://www.grid.ac/institutes/grid.438242.b", 
          "name": [
            "Tver State University, Tver, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Myasnichenko", 
        "givenName": "Vladimir", 
        "id": "sg:person.013562762060.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562762060.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technologies\u2014Bulgarian Academy of Sciences, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424988.b", 
          "name": [
            "Institute of Information and Communication Technologies\u2014Bulgarian Academy of Sciences, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "id": "sg:person.011173106320.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technologies\u2014Bulgarian Academy of Sciences, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424988.b", 
          "name": [
            "Institute of Information and Communication Technologies\u2014Bulgarian Academy of Sciences, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirilov", 
        "givenName": "Leoneed", 
        "id": "sg:person.015700215743.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015700215743.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tver State University, Tver, Russia", 
          "id": "http://www.grid.ac/institutes/grid.438242.b", 
          "name": [
            "Tver State University, Tver, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sdobnyakov", 
        "givenName": "Nickolay", 
        "id": "sg:person.010244167706.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010244167706.80"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-04-04", 
    "datePublishedReg": "2021-04-04", 
    "description": "The description of the mechanisms of formation and dynamics of changes in the internal structure of nanoparticles can allow predicting the properties of these nanoparticles. Despite the modern development of the experimental base and theoretical approaches, certain tasks in the study of structural characteristics, including the search for stable configurations, the description of the criteria for thermal stability, etc., are not being solved. The stable configuration is when the potential energy is minimal. In this paper we apply Simulated Annealing method for metal nanoparticle structures optimization developed earlier by the authors. Successful application of the method depends on algorithm parameters. One of the most important parameters is the value of the initial temperature. According to the literature the initial temperature needs to have a high value. The question is which value is high. A fixed value can be high for some initial data and not high for other. We propose several variants of calculation of the value of initial temperature and study their influence on algorithm performance.", 
    "editor": [
      {
        "familyName": "Georgiev", 
        "givenName": "Ivan", 
        "type": "Person"
      }, 
      {
        "familyName": "Kostadinov", 
        "givenName": "Hristo", 
        "type": "Person"
      }, 
      {
        "familyName": "Lilkova", 
        "givenName": "Elena", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-71616-5_25", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-71615-8", 
        "978-3-030-71616-5"
      ], 
      "name": "Advanced Computing in Industrial Mathematics", 
      "type": "Book"
    }, 
    "keywords": [
      "simulated annealing method", 
      "structure optimization", 
      "annealing method", 
      "variants of calculation", 
      "initial data", 
      "initial temperature", 
      "stable configuration", 
      "algorithm parameters", 
      "algorithm performance", 
      "theoretical approach", 
      "optimization", 
      "potential energy", 
      "thermal stability", 
      "modern development", 
      "parameters", 
      "important parameters", 
      "description", 
      "internal structure", 
      "successful application", 
      "temperature", 
      "experimental base", 
      "dynamics", 
      "configuration", 
      "calculations", 
      "nanoparticles", 
      "dynamics of changes", 
      "mechanism of formation", 
      "structural characteristics", 
      "higher values", 
      "values", 
      "properties", 
      "applications", 
      "method", 
      "approach", 
      "energy", 
      "stability", 
      "influence", 
      "certain tasks", 
      "structure", 
      "performance", 
      "criteria", 
      "search", 
      "characteristics", 
      "data", 
      "task", 
      "formation", 
      "authors", 
      "literature", 
      "variants", 
      "base", 
      "questions", 
      "mechanism", 
      "development", 
      "changes", 
      "study", 
      "paper"
    ], 
    "name": "Influence of the Temperature on Simulated Annealing Method for Metal Nanoparticle Structures Optimization", 
    "pagination": "278-290", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1136907748"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-71616-5_25"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-71616-5_25", 
      "https://app.dimensions.ai/details/publication/pub.1136907748"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_124.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-71616-5_25"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-71616-5_25'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-71616-5_25'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-71616-5_25'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-71616-5_25'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      23 PREDICATES      81 URIs      74 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-71616-5_25 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N92c05aeadea84f6ca92f2d437cde8cf6
4 schema:datePublished 2021-04-04
5 schema:datePublishedReg 2021-04-04
6 schema:description The description of the mechanisms of formation and dynamics of changes in the internal structure of nanoparticles can allow predicting the properties of these nanoparticles. Despite the modern development of the experimental base and theoretical approaches, certain tasks in the study of structural characteristics, including the search for stable configurations, the description of the criteria for thermal stability, etc., are not being solved. The stable configuration is when the potential energy is minimal. In this paper we apply Simulated Annealing method for metal nanoparticle structures optimization developed earlier by the authors. Successful application of the method depends on algorithm parameters. One of the most important parameters is the value of the initial temperature. According to the literature the initial temperature needs to have a high value. The question is which value is high. A fixed value can be high for some initial data and not high for other. We propose several variants of calculation of the value of initial temperature and study their influence on algorithm performance.
7 schema:editor N78852e19cbdb4ff6b1abfefd85368b52
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Neb4b317989444b3983d80c598e1a228a
12 schema:keywords algorithm parameters
13 algorithm performance
14 annealing method
15 applications
16 approach
17 authors
18 base
19 calculations
20 certain tasks
21 changes
22 characteristics
23 configuration
24 criteria
25 data
26 description
27 development
28 dynamics
29 dynamics of changes
30 energy
31 experimental base
32 formation
33 higher values
34 important parameters
35 influence
36 initial data
37 initial temperature
38 internal structure
39 literature
40 mechanism
41 mechanism of formation
42 method
43 modern development
44 nanoparticles
45 optimization
46 paper
47 parameters
48 performance
49 potential energy
50 properties
51 questions
52 search
53 simulated annealing method
54 stability
55 stable configuration
56 structural characteristics
57 structure
58 structure optimization
59 study
60 successful application
61 task
62 temperature
63 theoretical approach
64 thermal stability
65 values
66 variants
67 variants of calculation
68 schema:name Influence of the Temperature on Simulated Annealing Method for Metal Nanoparticle Structures Optimization
69 schema:pagination 278-290
70 schema:productId N5aad9834e827452c9bec7be879f8c008
71 Ndb45646daf204b92be8618b51bbd0160
72 schema:publisher N47f706d62f0b4031ae84e741ad940eba
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136907748
74 https://doi.org/10.1007/978-3-030-71616-5_25
75 schema:sdDatePublished 2022-05-10T10:37
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N8f530332dbc745af8e3646cdccd9e223
78 schema:url https://doi.org/10.1007/978-3-030-71616-5_25
79 sgo:license sg:explorer/license/
80 sgo:sdDataset chapters
81 rdf:type schema:Chapter
82 N1eb874627b904be3bd41c6bcc53f3e2b schema:familyName Kostadinov
83 schema:givenName Hristo
84 rdf:type schema:Person
85 N20a339fa91744f0aa3d8583e6e8f0395 rdf:first Nacd43fb716fd48c687a6df1d3df62b74
86 rdf:rest rdf:nil
87 N47f706d62f0b4031ae84e741ad940eba schema:name Springer Nature
88 rdf:type schema:Organisation
89 N5254abef6e67475abe1510f7f2a3246b rdf:first sg:person.011173106320.18
90 rdf:rest Nc90416cc36d04006a3f899b6382019f5
91 N5aad9834e827452c9bec7be879f8c008 schema:name dimensions_id
92 schema:value pub.1136907748
93 rdf:type schema:PropertyValue
94 N78852e19cbdb4ff6b1abfefd85368b52 rdf:first Nb3a68ad349a648dca89b10acbe65c7d5
95 rdf:rest Naf612f102fad49eb807805a6789c50bc
96 N8f530332dbc745af8e3646cdccd9e223 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N92c05aeadea84f6ca92f2d437cde8cf6 rdf:first sg:person.014434131110.58
99 rdf:rest N9a24824231fa48f995c8da86fc140669
100 N9a24824231fa48f995c8da86fc140669 rdf:first sg:person.013562762060.25
101 rdf:rest N5254abef6e67475abe1510f7f2a3246b
102 Nacd43fb716fd48c687a6df1d3df62b74 schema:familyName Lilkova
103 schema:givenName Elena
104 rdf:type schema:Person
105 Naf612f102fad49eb807805a6789c50bc rdf:first N1eb874627b904be3bd41c6bcc53f3e2b
106 rdf:rest N20a339fa91744f0aa3d8583e6e8f0395
107 Nb3a68ad349a648dca89b10acbe65c7d5 schema:familyName Georgiev
108 schema:givenName Ivan
109 rdf:type schema:Person
110 Nc90416cc36d04006a3f899b6382019f5 rdf:first sg:person.015700215743.52
111 rdf:rest Ned7eb3323769407686cddc57207dfbc5
112 Ndb45646daf204b92be8618b51bbd0160 schema:name doi
113 schema:value 10.1007/978-3-030-71616-5_25
114 rdf:type schema:PropertyValue
115 Neb4b317989444b3983d80c598e1a228a schema:isbn 978-3-030-71615-8
116 978-3-030-71616-5
117 schema:name Advanced Computing in Industrial Mathematics
118 rdf:type schema:Book
119 Ned7eb3323769407686cddc57207dfbc5 rdf:first sg:person.010244167706.80
120 rdf:rest rdf:nil
121 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
122 schema:name Engineering
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
125 schema:name Materials Engineering
126 rdf:type schema:DefinedTerm
127 sg:person.010244167706.80 schema:affiliation grid-institutes:grid.438242.b
128 schema:familyName Sdobnyakov
129 schema:givenName Nickolay
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010244167706.80
131 rdf:type schema:Person
132 sg:person.011173106320.18 schema:affiliation grid-institutes:grid.424988.b
133 schema:familyName Fidanova
134 schema:givenName Stefka
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18
136 rdf:type schema:Person
137 sg:person.013562762060.25 schema:affiliation grid-institutes:grid.438242.b
138 schema:familyName Myasnichenko
139 schema:givenName Vladimir
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562762060.25
141 rdf:type schema:Person
142 sg:person.014434131110.58 schema:affiliation grid-institutes:grid.424988.b
143 schema:familyName Mikhov
144 schema:givenName Rossen
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014434131110.58
146 rdf:type schema:Person
147 sg:person.015700215743.52 schema:affiliation grid-institutes:grid.424988.b
148 schema:familyName Kirilov
149 schema:givenName Leoneed
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015700215743.52
151 rdf:type schema:Person
152 grid-institutes:grid.424988.b schema:alternateName Institute of Information and Communication Technologies—Bulgarian Academy of Sciences, Sofia, Bulgaria
153 schema:name Institute of Information and Communication Technologies—Bulgarian Academy of Sciences, Sofia, Bulgaria
154 rdf:type schema:Organization
155 grid-institutes:grid.438242.b schema:alternateName Tver State University, Tver, Russia
156 schema:name Tver State University, Tver, Russia
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...