Automatic Generation and Classification of Malicious FQDN View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2021-02-20

AUTHORS

Kenichi Yoshida , Kazunori Fujiwara , Akira Sato , Shuji Sannomiya

ABSTRACT

Due to the increase in spam email and other anti-social behavior (such as the bot net command and control server) on the Internet, Domain Name System (DNS) blacklists (DNSBLs) have been created. These are “blacklists” of malicious hosts on the Internet that are reputed to send spam email and other anti-social behavior. Most email servers can be configured to reject messages that are sent from the hosts on these lists. Because it is difficult to keep up with new malicious hosts created every day, research is required to automate DNSBL generation. To address this problem, the application of machine learning is being studied thoroughly. Deep learning is considered to be a promising approach to classify the malicious host names. This study explores the risks of these approaches by showing a simple domain generation algorithm (DGA). This report shows the importance of attributes that are used rather than machine learning techniques. Researchers in machine learning and knowledge acquisition should focus on attributes that are more important in application fields than techniques when considering the practical applications. More... »

PAGES

120-129

Book

TITLE

Knowledge Management and Acquisition for Intelligent Systems

ISBN

978-3-030-69885-0
978-3-030-69886-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-69886-7_10

DOI

http://dx.doi.org/10.1007/978-3-030-69886-7_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1135466815


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tsukuba, Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.20515.33", 
          "name": [
            "University of Tsukuba, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshida", 
        "givenName": "Kenichi", 
        "id": "sg:person.014317107461.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014317107461.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan Registry Services Co., Ltd., Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Japan Registry Services Co., Ltd., Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fujiwara", 
        "givenName": "Kazunori", 
        "id": "sg:person.015071241307.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015071241307.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tsukuba, Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.20515.33", 
          "name": [
            "University of Tsukuba, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sato", 
        "givenName": "Akira", 
        "id": "sg:person.0717074353.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717074353.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tsukuba, Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.20515.33", 
          "name": [
            "University of Tsukuba, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sannomiya", 
        "givenName": "Shuji", 
        "id": "sg:person.011146745610.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011146745610.23"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-02-20", 
    "datePublishedReg": "2021-02-20", 
    "description": "Due to the increase in spam email and other anti-social behavior (such as the bot net command and control server) on the Internet, Domain Name System (DNS) blacklists (DNSBLs) have been created. These are \u201cblacklists\u201d of malicious hosts on the Internet that are reputed to send spam email and other anti-social behavior. Most email servers can be configured to reject messages that are sent from the hosts on these lists. Because it is difficult to keep up with new malicious hosts created every day, research is required to automate DNSBL generation. To address this problem, the application of machine learning is being studied thoroughly. Deep learning is considered to be a promising approach to classify the malicious host names. This study explores the risks of these approaches by showing a simple domain generation algorithm (DGA). This report shows the importance of attributes that are used rather than machine learning techniques. Researchers in machine learning and knowledge acquisition should focus on attributes that are more important in application fields than techniques when considering the practical applications.", 
    "editor": [
      {
        "familyName": "Uehara", 
        "givenName": "Hiroshi", 
        "type": "Person"
      }, 
      {
        "familyName": "Yamaguchi", 
        "givenName": "Takayasu", 
        "type": "Person"
      }, 
      {
        "familyName": "Bai", 
        "givenName": "Quan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-69886-7_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-69885-0", 
        "978-3-030-69886-7"
      ], 
      "name": "Knowledge Management and Acquisition for Intelligent Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "Domain Generation Algorithms", 
      "Domain Name System", 
      "malicious hosts", 
      "machine learning", 
      "spam emails", 
      "machine learning techniques", 
      "deep learning", 
      "Name System", 
      "host names", 
      "learning techniques", 
      "automatic generation", 
      "email servers", 
      "generation algorithm", 
      "knowledge acquisition", 
      "importance of attributes", 
      "Internet", 
      "application fields", 
      "learning", 
      "email", 
      "server", 
      "FQDN", 
      "promising approach", 
      "blacklist", 
      "attributes", 
      "practical applications", 
      "algorithm", 
      "applications", 
      "messages", 
      "classification", 
      "technique", 
      "generation", 
      "researchers", 
      "system", 
      "acquisition", 
      "list", 
      "research", 
      "name", 
      "field", 
      "behavior", 
      "host", 
      "anti-social behaviour", 
      "importance", 
      "study", 
      "risk", 
      "report", 
      "increase", 
      "days", 
      "approach", 
      "problem", 
      "Most email servers", 
      "new malicious hosts", 
      "DNSBL generation", 
      "malicious host names", 
      "simple domain generation algorithm", 
      "Malicious FQDN"
    ], 
    "name": "Automatic Generation and Classification of Malicious FQDN", 
    "pagination": "120-129", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1135466815"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-69886-7_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-69886-7_10", 
      "https://app.dimensions.ai/details/publication/pub.1135466815"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_26.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-69886-7_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-69886-7_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-69886-7_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-69886-7_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-69886-7_10'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      23 PREDICATES      80 URIs      73 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-69886-7_10 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N15b4d345ccc24c0891271c35545dad35
4 schema:datePublished 2021-02-20
5 schema:datePublishedReg 2021-02-20
6 schema:description Due to the increase in spam email and other anti-social behavior (such as the bot net command and control server) on the Internet, Domain Name System (DNS) blacklists (DNSBLs) have been created. These are “blacklists” of malicious hosts on the Internet that are reputed to send spam email and other anti-social behavior. Most email servers can be configured to reject messages that are sent from the hosts on these lists. Because it is difficult to keep up with new malicious hosts created every day, research is required to automate DNSBL generation. To address this problem, the application of machine learning is being studied thoroughly. Deep learning is considered to be a promising approach to classify the malicious host names. This study explores the risks of these approaches by showing a simple domain generation algorithm (DGA). This report shows the importance of attributes that are used rather than machine learning techniques. Researchers in machine learning and knowledge acquisition should focus on attributes that are more important in application fields than techniques when considering the practical applications.
7 schema:editor N2809e4cba01b4864b4b6ab2e3c952c1f
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Necd43c0b59ad43798cee9ec54f8feb82
12 schema:keywords DNSBL generation
13 Domain Generation Algorithms
14 Domain Name System
15 FQDN
16 Internet
17 Malicious FQDN
18 Most email servers
19 Name System
20 acquisition
21 algorithm
22 anti-social behaviour
23 application fields
24 applications
25 approach
26 attributes
27 automatic generation
28 behavior
29 blacklist
30 classification
31 days
32 deep learning
33 email
34 email servers
35 field
36 generation
37 generation algorithm
38 host
39 host names
40 importance
41 importance of attributes
42 increase
43 knowledge acquisition
44 learning
45 learning techniques
46 list
47 machine learning
48 machine learning techniques
49 malicious host names
50 malicious hosts
51 messages
52 name
53 new malicious hosts
54 practical applications
55 problem
56 promising approach
57 report
58 research
59 researchers
60 risk
61 server
62 simple domain generation algorithm
63 spam emails
64 study
65 system
66 technique
67 schema:name Automatic Generation and Classification of Malicious FQDN
68 schema:pagination 120-129
69 schema:productId N792a9ffdfa704d3ab2ad2c32029e039d
70 Ndb8bdf157aa046e7bdc62b8b35758961
71 schema:publisher N6be940d8284e4c4bb495e51c95d80c04
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135466815
73 https://doi.org/10.1007/978-3-030-69886-7_10
74 schema:sdDatePublished 2022-01-01T19:15
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N3986fff0b4ac41cfa942d7b8a64ef1d5
77 schema:url https://doi.org/10.1007/978-3-030-69886-7_10
78 sgo:license sg:explorer/license/
79 sgo:sdDataset chapters
80 rdf:type schema:Chapter
81 N047764a284de424dbfa8035fd33b5206 rdf:first sg:person.0717074353.90
82 rdf:rest N851a19159f53459eabaf87ed3124344a
83 N15b4d345ccc24c0891271c35545dad35 rdf:first sg:person.014317107461.87
84 rdf:rest N8e144da87e92493da48ae2ccca4fd6f7
85 N23cfecbb304a401aa1d63c77d5a7f9ba schema:familyName Yamaguchi
86 schema:givenName Takayasu
87 rdf:type schema:Person
88 N2809e4cba01b4864b4b6ab2e3c952c1f rdf:first Nbfc4c447f1a342fe81694fc4c0b698e0
89 rdf:rest Ne7a2e6bcdc8a414194717dc94e5a8fa3
90 N3986fff0b4ac41cfa942d7b8a64ef1d5 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N6be940d8284e4c4bb495e51c95d80c04 schema:name Springer Nature
93 rdf:type schema:Organisation
94 N701b06a02b8949adad791d89f9489cad rdf:first N8971baee6d7e4d868c68c6b55b00136b
95 rdf:rest rdf:nil
96 N792a9ffdfa704d3ab2ad2c32029e039d schema:name doi
97 schema:value 10.1007/978-3-030-69886-7_10
98 rdf:type schema:PropertyValue
99 N851a19159f53459eabaf87ed3124344a rdf:first sg:person.011146745610.23
100 rdf:rest rdf:nil
101 N8971baee6d7e4d868c68c6b55b00136b schema:familyName Bai
102 schema:givenName Quan
103 rdf:type schema:Person
104 N8e144da87e92493da48ae2ccca4fd6f7 rdf:first sg:person.015071241307.00
105 rdf:rest N047764a284de424dbfa8035fd33b5206
106 Nbfc4c447f1a342fe81694fc4c0b698e0 schema:familyName Uehara
107 schema:givenName Hiroshi
108 rdf:type schema:Person
109 Ndb8bdf157aa046e7bdc62b8b35758961 schema:name dimensions_id
110 schema:value pub.1135466815
111 rdf:type schema:PropertyValue
112 Ne7a2e6bcdc8a414194717dc94e5a8fa3 rdf:first N23cfecbb304a401aa1d63c77d5a7f9ba
113 rdf:rest N701b06a02b8949adad791d89f9489cad
114 Necd43c0b59ad43798cee9ec54f8feb82 schema:isbn 978-3-030-69885-0
115 978-3-030-69886-7
116 schema:name Knowledge Management and Acquisition for Intelligent Systems
117 rdf:type schema:Book
118 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
119 schema:name Information and Computing Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
122 schema:name Artificial Intelligence and Image Processing
123 rdf:type schema:DefinedTerm
124 sg:person.011146745610.23 schema:affiliation grid-institutes:grid.20515.33
125 schema:familyName Sannomiya
126 schema:givenName Shuji
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011146745610.23
128 rdf:type schema:Person
129 sg:person.014317107461.87 schema:affiliation grid-institutes:grid.20515.33
130 schema:familyName Yoshida
131 schema:givenName Kenichi
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014317107461.87
133 rdf:type schema:Person
134 sg:person.015071241307.00 schema:affiliation grid-institutes:None
135 schema:familyName Fujiwara
136 schema:givenName Kazunori
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015071241307.00
138 rdf:type schema:Person
139 sg:person.0717074353.90 schema:affiliation grid-institutes:grid.20515.33
140 schema:familyName Sato
141 schema:givenName Akira
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717074353.90
143 rdf:type schema:Person
144 grid-institutes:None schema:alternateName Japan Registry Services Co., Ltd., Tokyo, Japan
145 schema:name Japan Registry Services Co., Ltd., Tokyo, Japan
146 rdf:type schema:Organization
147 grid-institutes:grid.20515.33 schema:alternateName University of Tsukuba, Tsukuba, Japan
148 schema:name University of Tsukuba, Tsukuba, Japan
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...