Automatic Generation and Classification of Malicious FQDN View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2021-02-20

AUTHORS

Kenichi Yoshida , Kazunori Fujiwara , Akira Sato , Shuji Sannomiya

ABSTRACT

Due to the increase in spam email and other anti-social behavior (such as the bot net command and control server) on the Internet, Domain Name System (DNS) blacklists (DNSBLs) have been created. These are “blacklists” of malicious hosts on the Internet that are reputed to send spam email and other anti-social behavior. Most email servers can be configured to reject messages that are sent from the hosts on these lists. Because it is difficult to keep up with new malicious hosts created every day, research is required to automate DNSBL generation. To address this problem, the application of machine learning is being studied thoroughly. Deep learning is considered to be a promising approach to classify the malicious host names. This study explores the risks of these approaches by showing a simple domain generation algorithm (DGA). This report shows the importance of attributes that are used rather than machine learning techniques. Researchers in machine learning and knowledge acquisition should focus on attributes that are more important in application fields than techniques when considering the practical applications. More... »

PAGES

120-129

Book

TITLE

Knowledge Management and Acquisition for Intelligent Systems

ISBN

978-3-030-69885-0
978-3-030-69886-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-69886-7_10

DOI

http://dx.doi.org/10.1007/978-3-030-69886-7_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1135466815


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tsukuba, Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.20515.33", 
          "name": [
            "University of Tsukuba, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshida", 
        "givenName": "Kenichi", 
        "id": "sg:person.014317107461.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014317107461.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan Registry Services Co., Ltd., Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Japan Registry Services Co., Ltd., Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fujiwara", 
        "givenName": "Kazunori", 
        "id": "sg:person.015071241307.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015071241307.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tsukuba, Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.20515.33", 
          "name": [
            "University of Tsukuba, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sato", 
        "givenName": "Akira", 
        "id": "sg:person.0717074353.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717074353.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tsukuba, Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.20515.33", 
          "name": [
            "University of Tsukuba, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sannomiya", 
        "givenName": "Shuji", 
        "id": "sg:person.011146745610.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011146745610.23"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-02-20", 
    "datePublishedReg": "2021-02-20", 
    "description": "Due to the increase in spam email and other anti-social behavior (such as the bot net command and control server) on the Internet, Domain Name System (DNS) blacklists (DNSBLs) have been created. These are \u201cblacklists\u201d of malicious hosts on the Internet that are reputed to send spam email and other anti-social behavior. Most email servers can be configured to reject messages that are sent from the hosts on these lists. Because it is difficult to keep up with new malicious hosts created every day, research is required to automate DNSBL generation. To address this problem, the application of machine learning is being studied thoroughly. Deep learning is considered to be a promising approach to classify the malicious host names. This study explores the risks of these approaches by showing a simple domain generation algorithm (DGA). This report shows the importance of attributes that are used rather than machine learning techniques. Researchers in machine learning and knowledge acquisition should focus on attributes that are more important in application fields than techniques when considering the practical applications.", 
    "editor": [
      {
        "familyName": "Uehara", 
        "givenName": "Hiroshi", 
        "type": "Person"
      }, 
      {
        "familyName": "Yamaguchi", 
        "givenName": "Takayasu", 
        "type": "Person"
      }, 
      {
        "familyName": "Bai", 
        "givenName": "Quan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-69886-7_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-69885-0", 
        "978-3-030-69886-7"
      ], 
      "name": "Knowledge Management and Acquisition for Intelligent Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "Domain Generation Algorithms", 
      "Domain Name System", 
      "malicious hosts", 
      "machine learning", 
      "spam emails", 
      "machine learning techniques", 
      "deep learning", 
      "Name System", 
      "host names", 
      "learning techniques", 
      "automatic generation", 
      "email servers", 
      "generation algorithm", 
      "knowledge acquisition", 
      "importance of attributes", 
      "Internet", 
      "application fields", 
      "learning", 
      "email", 
      "server", 
      "FQDN", 
      "promising approach", 
      "blacklist", 
      "attributes", 
      "practical applications", 
      "algorithm", 
      "applications", 
      "messages", 
      "classification", 
      "technique", 
      "generation", 
      "researchers", 
      "system", 
      "acquisition", 
      "list", 
      "research", 
      "name", 
      "field", 
      "behavior", 
      "host", 
      "anti-social behaviour", 
      "importance", 
      "study", 
      "risk", 
      "report", 
      "increase", 
      "days", 
      "approach", 
      "problem"
    ], 
    "name": "Automatic Generation and Classification of Malicious FQDN", 
    "pagination": "120-129", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1135466815"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-69886-7_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-69886-7_10", 
      "https://app.dimensions.ai/details/publication/pub.1135466815"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_45.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-69886-7_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-69886-7_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-69886-7_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-69886-7_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-69886-7_10'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      23 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-69886-7_10 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9ed208c7983b493f8be90e2810e8a213
4 schema:datePublished 2021-02-20
5 schema:datePublishedReg 2021-02-20
6 schema:description Due to the increase in spam email and other anti-social behavior (such as the bot net command and control server) on the Internet, Domain Name System (DNS) blacklists (DNSBLs) have been created. These are “blacklists” of malicious hosts on the Internet that are reputed to send spam email and other anti-social behavior. Most email servers can be configured to reject messages that are sent from the hosts on these lists. Because it is difficult to keep up with new malicious hosts created every day, research is required to automate DNSBL generation. To address this problem, the application of machine learning is being studied thoroughly. Deep learning is considered to be a promising approach to classify the malicious host names. This study explores the risks of these approaches by showing a simple domain generation algorithm (DGA). This report shows the importance of attributes that are used rather than machine learning techniques. Researchers in machine learning and knowledge acquisition should focus on attributes that are more important in application fields than techniques when considering the practical applications.
7 schema:editor Nc1aae171f2d34ba39ec5f461037b810a
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N7f92a00700a343748eae3ed86a592748
12 schema:keywords Domain Generation Algorithms
13 Domain Name System
14 FQDN
15 Internet
16 Name System
17 acquisition
18 algorithm
19 anti-social behaviour
20 application fields
21 applications
22 approach
23 attributes
24 automatic generation
25 behavior
26 blacklist
27 classification
28 days
29 deep learning
30 email
31 email servers
32 field
33 generation
34 generation algorithm
35 host
36 host names
37 importance
38 importance of attributes
39 increase
40 knowledge acquisition
41 learning
42 learning techniques
43 list
44 machine learning
45 machine learning techniques
46 malicious hosts
47 messages
48 name
49 practical applications
50 problem
51 promising approach
52 report
53 research
54 researchers
55 risk
56 server
57 spam emails
58 study
59 system
60 technique
61 schema:name Automatic Generation and Classification of Malicious FQDN
62 schema:pagination 120-129
63 schema:productId N2d532f2959a0433bb9d48a896601c7ca
64 N74b364a8c0f3459698a90364d29d6d81
65 schema:publisher N584816bc2e7243c5af5d8b3504003a35
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135466815
67 https://doi.org/10.1007/978-3-030-69886-7_10
68 schema:sdDatePublished 2022-05-20T07:48
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Ne5c67b570350464da34a0a49dbbe67e5
71 schema:url https://doi.org/10.1007/978-3-030-69886-7_10
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N24a754d9b92c4ddbb88f0155ff035cd8 rdf:first sg:person.015071241307.00
76 rdf:rest N250f49a72d3247f0bec8f9f1672be8e6
77 N250f49a72d3247f0bec8f9f1672be8e6 rdf:first sg:person.0717074353.90
78 rdf:rest N6133a8307f834e9e8d853b57480501ab
79 N2d532f2959a0433bb9d48a896601c7ca schema:name dimensions_id
80 schema:value pub.1135466815
81 rdf:type schema:PropertyValue
82 N4355ba89a1734a07aa7004220430037a schema:familyName Yamaguchi
83 schema:givenName Takayasu
84 rdf:type schema:Person
85 N469995cbf26342ef88efb24eb81e9aae rdf:first Nf2c665f7f2b34c59a386b74cf700e58b
86 rdf:rest rdf:nil
87 N584816bc2e7243c5af5d8b3504003a35 schema:name Springer Nature
88 rdf:type schema:Organisation
89 N6133a8307f834e9e8d853b57480501ab rdf:first sg:person.011146745610.23
90 rdf:rest rdf:nil
91 N74b364a8c0f3459698a90364d29d6d81 schema:name doi
92 schema:value 10.1007/978-3-030-69886-7_10
93 rdf:type schema:PropertyValue
94 N7f92a00700a343748eae3ed86a592748 schema:isbn 978-3-030-69885-0
95 978-3-030-69886-7
96 schema:name Knowledge Management and Acquisition for Intelligent Systems
97 rdf:type schema:Book
98 N941a8e9b79194b1eae0c1b31ba8fc41b rdf:first N4355ba89a1734a07aa7004220430037a
99 rdf:rest N469995cbf26342ef88efb24eb81e9aae
100 N96d726fcd150443daa62ad2c3a985ae5 schema:familyName Uehara
101 schema:givenName Hiroshi
102 rdf:type schema:Person
103 N9ed208c7983b493f8be90e2810e8a213 rdf:first sg:person.014317107461.87
104 rdf:rest N24a754d9b92c4ddbb88f0155ff035cd8
105 Nc1aae171f2d34ba39ec5f461037b810a rdf:first N96d726fcd150443daa62ad2c3a985ae5
106 rdf:rest N941a8e9b79194b1eae0c1b31ba8fc41b
107 Ne5c67b570350464da34a0a49dbbe67e5 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 Nf2c665f7f2b34c59a386b74cf700e58b schema:familyName Bai
110 schema:givenName Quan
111 rdf:type schema:Person
112 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
113 schema:name Information and Computing Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
116 schema:name Artificial Intelligence and Image Processing
117 rdf:type schema:DefinedTerm
118 sg:person.011146745610.23 schema:affiliation grid-institutes:grid.20515.33
119 schema:familyName Sannomiya
120 schema:givenName Shuji
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011146745610.23
122 rdf:type schema:Person
123 sg:person.014317107461.87 schema:affiliation grid-institutes:grid.20515.33
124 schema:familyName Yoshida
125 schema:givenName Kenichi
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014317107461.87
127 rdf:type schema:Person
128 sg:person.015071241307.00 schema:affiliation grid-institutes:None
129 schema:familyName Fujiwara
130 schema:givenName Kazunori
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015071241307.00
132 rdf:type schema:Person
133 sg:person.0717074353.90 schema:affiliation grid-institutes:grid.20515.33
134 schema:familyName Sato
135 schema:givenName Akira
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717074353.90
137 rdf:type schema:Person
138 grid-institutes:None schema:alternateName Japan Registry Services Co., Ltd., Tokyo, Japan
139 schema:name Japan Registry Services Co., Ltd., Tokyo, Japan
140 rdf:type schema:Organization
141 grid-institutes:grid.20515.33 schema:alternateName University of Tsukuba, Tsukuba, Japan
142 schema:name University of Tsukuba, Tsukuba, Japan
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...