Mixed Reality-Based Dataset Generation for Learning-Based Scan-to-BIM View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2021-02-21

AUTHORS

Parth Bhadaniya , Varun Kumar Reja , Koshy Varghese

ABSTRACT

Generating as-is 3D Models is constantly explored for various construction management applications. The industry has been dependent on either manual or semi-automated workflows for the Scan-to-BIM process, which is laborious as well as time taking. Recently machine learning has opened avenues to recognize geometrical elements from point clouds but has not been much used because of the insufficient labeled dataset. This study aims to set up a semi-automated workflow to create labeled data sets which can be used to train ML algorithms for element identification purpose. The study proposes an interactive user interface using a gaming engine within a mixed reality environment. A workflow for fusing as-is spatial information with the AR/VR based information is presented in Unity 3D. A user-friendly UI is then developed and integrated with the VR environment to help the user to choose the category of the component by visualization. This results in the generation of an accurate as-is 3D Model, which does not require much computation or time. The intention is to propose a smooth workflow to generate datasets for learning-based methodologies in a streamlined Scan-to-BIM Process. However, this process requires user domain knowledge and input. The dataset can be continuously increased and improved to get automated results later. More... »

PAGES

389-403

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-68787-8_29

DOI

http://dx.doi.org/10.1007/978-3-030-68787-8_29

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1135476621


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Madras, 600036, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Indian Institute of Technology Madras, 600036, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhadaniya", 
        "givenName": "Parth", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Technology Sydney, 15 Broadway, 2007, Ultimo, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.117476.2", 
          "name": [
            "Indian Institute of Technology Madras, 600036, Chennai, India", 
            "University of Technology Sydney, 15 Broadway, 2007, Ultimo, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reja", 
        "givenName": "Varun Kumar", 
        "id": "sg:person.011761601433.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011761601433.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Madras, 600036, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Indian Institute of Technology Madras, 600036, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Varghese", 
        "givenName": "Koshy", 
        "id": "sg:person.013722032627.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013722032627.76"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-02-21", 
    "datePublishedReg": "2021-02-21", 
    "description": "Generating as-is 3D Models is constantly explored for various construction management applications. The industry has been dependent on either manual or semi-automated workflows for the Scan-to-BIM process, which is laborious as well as time taking. Recently machine learning has opened avenues to recognize geometrical elements from point clouds but has not been much used because of the insufficient labeled dataset. This study aims to set up a semi-automated workflow to create labeled data sets which can be used to train ML algorithms for element identification purpose. The study proposes an interactive user interface using a gaming engine within a mixed reality environment. A workflow for fusing as-is spatial information with the AR/VR based information is presented in Unity 3D. A user-friendly UI is then developed and integrated with the VR environment to help the user to choose the category of the component by visualization. This results in the generation of an accurate as-is 3D Model, which does not require much computation or time. The intention is to propose a smooth workflow to generate datasets for learning-based methodologies in a streamlined Scan-to-BIM Process. However, this process requires user domain knowledge and input. The dataset can be continuously increased and improved to get automated results later.", 
    "editor": [
      {
        "familyName": "Del Bimbo", 
        "givenName": "Alberto", 
        "type": "Person"
      }, 
      {
        "familyName": "Cucchiara", 
        "givenName": "Rita", 
        "type": "Person"
      }, 
      {
        "familyName": "Sclaroff", 
        "givenName": "Stan", 
        "type": "Person"
      }, 
      {
        "familyName": "Farinella", 
        "givenName": "Giovanni Maria", 
        "type": "Person"
      }, 
      {
        "familyName": "Mei", 
        "givenName": "Tao", 
        "type": "Person"
      }, 
      {
        "familyName": "Bertini", 
        "givenName": "Marco", 
        "type": "Person"
      }, 
      {
        "familyName": "Escalante", 
        "givenName": "Hugo Jair", 
        "type": "Person"
      }, 
      {
        "familyName": "Vezzani", 
        "givenName": "Roberto", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-68787-8_29", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-68786-1", 
        "978-3-030-68787-8"
      ], 
      "name": "Pattern Recognition. ICPR International Workshops and Challenges", 
      "type": "Book"
    }, 
    "keywords": [
      "user\u2019s domain knowledge", 
      "user-friendly UI", 
      "interactive user interface", 
      "construction management applications", 
      "BIM process", 
      "mixed reality environment", 
      "AR/VR", 
      "learning-based methodology", 
      "gaming engine", 
      "user interface", 
      "machine learning", 
      "domain knowledge", 
      "mixed reality", 
      "Unity 3D.", 
      "dataset generation", 
      "ML algorithms", 
      "reality environment", 
      "VR environment", 
      "automated workflow", 
      "point clouds", 
      "management applications", 
      "smooth workflow", 
      "workflow", 
      "spatial information", 
      "dataset", 
      "data sets", 
      "geometrical elements", 
      "learning", 
      "users", 
      "information", 
      "identification purposes", 
      "UI", 
      "environment", 
      "algorithm", 
      "cloud", 
      "VR", 
      "computation", 
      "engine", 
      "visualization", 
      "set", 
      "BIM", 
      "interface", 
      "model", 
      "applications", 
      "reality", 
      "input", 
      "generation", 
      "methodology", 
      "process", 
      "time", 
      "knowledge", 
      "industry", 
      "intention", 
      "categories", 
      "purpose", 
      "components", 
      "scans", 
      "results", 
      "elements", 
      "avenues", 
      "study", 
      "element identification purpose"
    ], 
    "name": "Mixed Reality-Based Dataset Generation for Learning-Based Scan-to-BIM", 
    "pagination": "389-403", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1135476621"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-68787-8_29"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-68787-8_29", 
      "https://app.dimensions.ai/details/publication/pub.1135476621"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_308.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-68787-8_29"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-68787-8_29'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-68787-8_29'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-68787-8_29'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-68787-8_29'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      23 PREDICATES      88 URIs      80 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-68787-8_29 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author N35cfd60184f947caa8d47275e3129f10
5 schema:datePublished 2021-02-21
6 schema:datePublishedReg 2021-02-21
7 schema:description Generating as-is 3D Models is constantly explored for various construction management applications. The industry has been dependent on either manual or semi-automated workflows for the Scan-to-BIM process, which is laborious as well as time taking. Recently machine learning has opened avenues to recognize geometrical elements from point clouds but has not been much used because of the insufficient labeled dataset. This study aims to set up a semi-automated workflow to create labeled data sets which can be used to train ML algorithms for element identification purpose. The study proposes an interactive user interface using a gaming engine within a mixed reality environment. A workflow for fusing as-is spatial information with the AR/VR based information is presented in Unity 3D. A user-friendly UI is then developed and integrated with the VR environment to help the user to choose the category of the component by visualization. This results in the generation of an accurate as-is 3D Model, which does not require much computation or time. The intention is to propose a smooth workflow to generate datasets for learning-based methodologies in a streamlined Scan-to-BIM Process. However, this process requires user domain knowledge and input. The dataset can be continuously increased and improved to get automated results later.
8 schema:editor Nb888df28656c46cf95f2e9e7b2a3d65f
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Nbe5265fe2ced420888ffaf6ad6e52403
13 schema:keywords AR/VR
14 BIM
15 BIM process
16 ML algorithms
17 UI
18 Unity 3D.
19 VR
20 VR environment
21 algorithm
22 applications
23 automated workflow
24 avenues
25 categories
26 cloud
27 components
28 computation
29 construction management applications
30 data sets
31 dataset
32 dataset generation
33 domain knowledge
34 element identification purpose
35 elements
36 engine
37 environment
38 gaming engine
39 generation
40 geometrical elements
41 identification purposes
42 industry
43 information
44 input
45 intention
46 interactive user interface
47 interface
48 knowledge
49 learning
50 learning-based methodology
51 machine learning
52 management applications
53 methodology
54 mixed reality
55 mixed reality environment
56 model
57 point clouds
58 process
59 purpose
60 reality
61 reality environment
62 results
63 scans
64 set
65 smooth workflow
66 spatial information
67 study
68 time
69 user interface
70 user-friendly UI
71 users
72 user’s domain knowledge
73 visualization
74 workflow
75 schema:name Mixed Reality-Based Dataset Generation for Learning-Based Scan-to-BIM
76 schema:pagination 389-403
77 schema:productId N01e435768d734390a9172ac9ba68fe88
78 N7140448f6f2d4b50b17dc56d4ca3ddd0
79 schema:publisher N8a32823236d64aedbf78940bcde220b3
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135476621
81 https://doi.org/10.1007/978-3-030-68787-8_29
82 schema:sdDatePublished 2022-01-01T19:17
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N3352774474ef44409593cc124ecaa464
85 schema:url https://doi.org/10.1007/978-3-030-68787-8_29
86 sgo:license sg:explorer/license/
87 sgo:sdDataset chapters
88 rdf:type schema:Chapter
89 N01e435768d734390a9172ac9ba68fe88 schema:name doi
90 schema:value 10.1007/978-3-030-68787-8_29
91 rdf:type schema:PropertyValue
92 N01faf7ed363049da90807209696fd604 rdf:first N6d8c4978bad145d995c6618af603a346
93 rdf:rest Nbb7c47a3a2334108915d18eb3dfbc9e0
94 N16a977f631bd41378238494646849378 schema:affiliation grid-institutes:grid.417969.4
95 schema:familyName Bhadaniya
96 schema:givenName Parth
97 rdf:type schema:Person
98 N2d52b560d21944eeba32a319fc5bce68 rdf:first Nf702c4425b5b434facbbb68a239cfa2a
99 rdf:rest N01faf7ed363049da90807209696fd604
100 N3352774474ef44409593cc124ecaa464 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N34e08433b6af4d3196d54f0d08b88e87 rdf:first sg:person.011761601433.31
103 rdf:rest N55ed7cd690064def8609d56d212fc4af
104 N35cfd60184f947caa8d47275e3129f10 rdf:first N16a977f631bd41378238494646849378
105 rdf:rest N34e08433b6af4d3196d54f0d08b88e87
106 N44ae1c46b3de4ba9bed0397ee74a729b rdf:first Nc776f2ab4dc44c73ae32a520d85525f7
107 rdf:rest N4feb2153e0f74693969b0eeccc96ee7e
108 N4feb2153e0f74693969b0eeccc96ee7e rdf:first Nb959c5eeecd848e5acb9ce5754170486
109 rdf:rest N2d52b560d21944eeba32a319fc5bce68
110 N55ed7cd690064def8609d56d212fc4af rdf:first sg:person.013722032627.76
111 rdf:rest rdf:nil
112 N6d8c4978bad145d995c6618af603a346 schema:familyName Mei
113 schema:givenName Tao
114 rdf:type schema:Person
115 N7140448f6f2d4b50b17dc56d4ca3ddd0 schema:name dimensions_id
116 schema:value pub.1135476621
117 rdf:type schema:PropertyValue
118 N8a32823236d64aedbf78940bcde220b3 schema:name Springer Nature
119 rdf:type schema:Organisation
120 Na96fac87a29a4aae95789172eb87f055 schema:familyName Vezzani
121 schema:givenName Roberto
122 rdf:type schema:Person
123 Nb888df28656c46cf95f2e9e7b2a3d65f rdf:first Nf8064c810d7742d48f36cacd395684b7
124 rdf:rest N44ae1c46b3de4ba9bed0397ee74a729b
125 Nb959c5eeecd848e5acb9ce5754170486 schema:familyName Sclaroff
126 schema:givenName Stan
127 rdf:type schema:Person
128 Nbb7c47a3a2334108915d18eb3dfbc9e0 rdf:first Nc5eba0a89a4146edab15228ada3dcab1
129 rdf:rest Nc3679ed2646a4d1991f68199123b0de7
130 Nbe5265fe2ced420888ffaf6ad6e52403 schema:isbn 978-3-030-68786-1
131 978-3-030-68787-8
132 schema:name Pattern Recognition. ICPR International Workshops and Challenges
133 rdf:type schema:Book
134 Nc3679ed2646a4d1991f68199123b0de7 rdf:first Ne658d5066a0d4cefbc3152e1e8de2212
135 rdf:rest Nee77fc20f4944acc9e1bd50fdfd62f4d
136 Nc5eba0a89a4146edab15228ada3dcab1 schema:familyName Bertini
137 schema:givenName Marco
138 rdf:type schema:Person
139 Nc776f2ab4dc44c73ae32a520d85525f7 schema:familyName Cucchiara
140 schema:givenName Rita
141 rdf:type schema:Person
142 Ne658d5066a0d4cefbc3152e1e8de2212 schema:familyName Escalante
143 schema:givenName Hugo Jair
144 rdf:type schema:Person
145 Nee77fc20f4944acc9e1bd50fdfd62f4d rdf:first Na96fac87a29a4aae95789172eb87f055
146 rdf:rest rdf:nil
147 Nf702c4425b5b434facbbb68a239cfa2a schema:familyName Farinella
148 schema:givenName Giovanni Maria
149 rdf:type schema:Person
150 Nf8064c810d7742d48f36cacd395684b7 schema:familyName Del Bimbo
151 schema:givenName Alberto
152 rdf:type schema:Person
153 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
154 schema:name Information and Computing Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
157 schema:name Artificial Intelligence and Image Processing
158 rdf:type schema:DefinedTerm
159 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
160 schema:name Information Systems
161 rdf:type schema:DefinedTerm
162 sg:person.011761601433.31 schema:affiliation grid-institutes:grid.117476.2
163 schema:familyName Reja
164 schema:givenName Varun Kumar
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011761601433.31
166 rdf:type schema:Person
167 sg:person.013722032627.76 schema:affiliation grid-institutes:grid.417969.4
168 schema:familyName Varghese
169 schema:givenName Koshy
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013722032627.76
171 rdf:type schema:Person
172 grid-institutes:grid.117476.2 schema:alternateName University of Technology Sydney, 15 Broadway, 2007, Ultimo, NSW, Australia
173 schema:name Indian Institute of Technology Madras, 600036, Chennai, India
174 University of Technology Sydney, 15 Broadway, 2007, Ultimo, NSW, Australia
175 rdf:type schema:Organization
176 grid-institutes:grid.417969.4 schema:alternateName Indian Institute of Technology Madras, 600036, Chennai, India
177 schema:name Indian Institute of Technology Madras, 600036, Chennai, India
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...