2020-12-09
AUTHORSDavid Lanzenberger , Ueli Maurer
ABSTRACTThis paper makes three contributions. First, we present a simple theory of random systems. The main idea is to think of a probabilistic system as an equivalence class of distributions over deterministic systems. Second, we demonstrate how in this new theory, the optimal information-theoretic distinguishing advantage between two systems can be characterized merely in terms of the statistical distance of probability distributions, providing a more elementary understanding of the distance of systems. In particular, two systems that are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-close in terms of the best distinguishing advantage can be understood as being equal with probability \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-\epsilon $$\end{document}, a property that holds statically, without even considering a distinguisher, let alone its interaction with the systems. Finally, we exploit this new characterization of the distinguishing advantage to prove that any threshold combiner is an amplifier for indistinguishability in the information-theoretic setting, generalizing and simplifying results from Maurer, Pietrzak, and Renner (CRYPTO 2007). More... »
PAGES207-240
Theory of Cryptography
ISBN
978-3-030-64380-5
978-3-030-64381-2
http://scigraph.springernature.com/pub.10.1007/978-3-030-64381-2_8
DOIhttp://dx.doi.org/10.1007/978-3-030-64381-2_8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1133467855
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5801.c",
"name": [
"Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland"
],
"type": "Organization"
},
"familyName": "Lanzenberger",
"givenName": "David",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5801.c",
"name": [
"Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland"
],
"type": "Organization"
},
"familyName": "Maurer",
"givenName": "Ueli",
"id": "sg:person.01316567627.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316567627.91"
],
"type": "Person"
}
],
"datePublished": "2020-12-09",
"datePublishedReg": "2020-12-09",
"description": "This paper makes three contributions. First, we present a simple theory of random systems. The main idea is to think of a probabilistic system as an equivalence class of distributions over deterministic systems. Second, we demonstrate how in this new theory, the optimal information-theoretic distinguishing advantage between two systems can be characterized merely in terms of the statistical distance of probability distributions, providing a more elementary understanding of the distance of systems. In particular, two systems that are \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon $$\\end{document}-close in terms of the best distinguishing advantage can be understood as being equal with probability \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$1-\\epsilon $$\\end{document}, a property that holds statically, without even considering a distinguisher, let alone its interaction with the systems. Finally, we exploit this new characterization of the distinguishing advantage to prove that any threshold combiner is an amplifier for indistinguishability in the information-theoretic setting, generalizing and simplifying results from Maurer, Pietrzak, and Renner (CRYPTO\u00a02007).",
"editor": [
{
"familyName": "Pass",
"givenName": "Rafael",
"type": "Person"
},
{
"familyName": "Pietrzak",
"givenName": "Krzysztof",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-64381-2_8",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-64380-5",
"978-3-030-64381-2"
],
"name": "Theory of Cryptography",
"type": "Book"
},
"keywords": [
"random systems",
"deterministic system",
"statistical distance",
"probability distribution",
"probabilistic systems",
"equivalence classes",
"new characterization",
"simple theory",
"information-theoretic setting",
"main idea",
"new theory",
"theory",
"elementary understanding",
"system",
"distribution",
"terms",
"generalizing",
"probability",
"class",
"indistinguishability",
"coupling",
"distance",
"advantages",
"Renner",
"combiner",
"properties",
"Maurer",
"distinguisher",
"idea",
"close",
"amplifier",
"results",
"contribution",
"Pietrzak",
"interaction",
"characterization",
"setting",
"understanding",
"paper"
],
"name": "Coupling of Random Systems",
"pagination": "207-240",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1133467855"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-64381-2_8"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-64381-2_8",
"https://app.dimensions.ai/details/publication/pub.1133467855"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:51",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_415.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-64381-2_8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-64381-2_8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-64381-2_8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-64381-2_8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-64381-2_8'
This table displays all metadata directly associated to this object as RDF triples.
110 TRIPLES
23 PREDICATES
64 URIs
57 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-64381-2_8 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0104 |
3 | ″ | schema:author | Nbcc362e63392456fb7c2bd88975a5a42 |
4 | ″ | schema:datePublished | 2020-12-09 |
5 | ″ | schema:datePublishedReg | 2020-12-09 |
6 | ″ | schema:description | This paper makes three contributions. First, we present a simple theory of random systems. The main idea is to think of a probabilistic system as an equivalence class of distributions over deterministic systems. Second, we demonstrate how in this new theory, the optimal information-theoretic distinguishing advantage between two systems can be characterized merely in terms of the statistical distance of probability distributions, providing a more elementary understanding of the distance of systems. In particular, two systems that are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-close in terms of the best distinguishing advantage can be understood as being equal with probability \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-\epsilon $$\end{document}, a property that holds statically, without even considering a distinguisher, let alone its interaction with the systems. Finally, we exploit this new characterization of the distinguishing advantage to prove that any threshold combiner is an amplifier for indistinguishability in the information-theoretic setting, generalizing and simplifying results from Maurer, Pietrzak, and Renner (CRYPTO 2007). |
7 | ″ | schema:editor | N4a3a8fc494194f89b6c035c978c9a28a |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N5af43f289ffd4d7585e005180f60c295 |
12 | ″ | schema:keywords | Maurer |
13 | ″ | ″ | Pietrzak |
14 | ″ | ″ | Renner |
15 | ″ | ″ | advantages |
16 | ″ | ″ | amplifier |
17 | ″ | ″ | characterization |
18 | ″ | ″ | class |
19 | ″ | ″ | close |
20 | ″ | ″ | combiner |
21 | ″ | ″ | contribution |
22 | ″ | ″ | coupling |
23 | ″ | ″ | deterministic system |
24 | ″ | ″ | distance |
25 | ″ | ″ | distinguisher |
26 | ″ | ″ | distribution |
27 | ″ | ″ | elementary understanding |
28 | ″ | ″ | equivalence classes |
29 | ″ | ″ | generalizing |
30 | ″ | ″ | idea |
31 | ″ | ″ | indistinguishability |
32 | ″ | ″ | information-theoretic setting |
33 | ″ | ″ | interaction |
34 | ″ | ″ | main idea |
35 | ″ | ″ | new characterization |
36 | ″ | ″ | new theory |
37 | ″ | ″ | paper |
38 | ″ | ″ | probabilistic systems |
39 | ″ | ″ | probability |
40 | ″ | ″ | probability distribution |
41 | ″ | ″ | properties |
42 | ″ | ″ | random systems |
43 | ″ | ″ | results |
44 | ″ | ″ | setting |
45 | ″ | ″ | simple theory |
46 | ″ | ″ | statistical distance |
47 | ″ | ″ | system |
48 | ″ | ″ | terms |
49 | ″ | ″ | theory |
50 | ″ | ″ | understanding |
51 | ″ | schema:name | Coupling of Random Systems |
52 | ″ | schema:pagination | 207-240 |
53 | ″ | schema:productId | N65215dc4fadb49eabafcae9a5b3a5b82 |
54 | ″ | ″ | N9bbaca52a0374170b924bd599d3a3f1b |
55 | ″ | schema:publisher | N290064f0016d4e95bd0702b6063f5185 |
56 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1133467855 |
57 | ″ | ″ | https://doi.org/10.1007/978-3-030-64381-2_8 |
58 | ″ | schema:sdDatePublished | 2022-05-10T10:51 |
59 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
60 | ″ | schema:sdPublisher | N14c33683d3544d55b727902b2255b10e |
61 | ″ | schema:url | https://doi.org/10.1007/978-3-030-64381-2_8 |
62 | ″ | sgo:license | sg:explorer/license/ |
63 | ″ | sgo:sdDataset | chapters |
64 | ″ | rdf:type | schema:Chapter |
65 | N14c33683d3544d55b727902b2255b10e | schema:name | Springer Nature - SN SciGraph project |
66 | ″ | rdf:type | schema:Organization |
67 | N290064f0016d4e95bd0702b6063f5185 | schema:name | Springer Nature |
68 | ″ | rdf:type | schema:Organisation |
69 | N39fd73eba08440f0a99c60ef9fc6d605 | schema:familyName | Pass |
70 | ″ | schema:givenName | Rafael |
71 | ″ | rdf:type | schema:Person |
72 | N4a3a8fc494194f89b6c035c978c9a28a | rdf:first | N39fd73eba08440f0a99c60ef9fc6d605 |
73 | ″ | rdf:rest | Nb500367ac17241c6ae2e333f72199cb8 |
74 | N5af43f289ffd4d7585e005180f60c295 | schema:isbn | 978-3-030-64380-5 |
75 | ″ | ″ | 978-3-030-64381-2 |
76 | ″ | schema:name | Theory of Cryptography |
77 | ″ | rdf:type | schema:Book |
78 | N65215dc4fadb49eabafcae9a5b3a5b82 | schema:name | doi |
79 | ″ | schema:value | 10.1007/978-3-030-64381-2_8 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | N8e1360b2c270474d934660574b49dc7e | rdf:first | sg:person.01316567627.91 |
82 | ″ | rdf:rest | rdf:nil |
83 | N9bbaca52a0374170b924bd599d3a3f1b | schema:name | dimensions_id |
84 | ″ | schema:value | pub.1133467855 |
85 | ″ | rdf:type | schema:PropertyValue |
86 | Nb500367ac17241c6ae2e333f72199cb8 | rdf:first | Ncb3aeff9b41d4a538f95eb41cba31eb2 |
87 | ″ | rdf:rest | rdf:nil |
88 | Nbcc362e63392456fb7c2bd88975a5a42 | rdf:first | Nf219ec4072c64e6fb00506581a516076 |
89 | ″ | rdf:rest | N8e1360b2c270474d934660574b49dc7e |
90 | Ncb3aeff9b41d4a538f95eb41cba31eb2 | schema:familyName | Pietrzak |
91 | ″ | schema:givenName | Krzysztof |
92 | ″ | rdf:type | schema:Person |
93 | Nf219ec4072c64e6fb00506581a516076 | schema:affiliation | grid-institutes:grid.5801.c |
94 | ″ | schema:familyName | Lanzenberger |
95 | ″ | schema:givenName | David |
96 | ″ | rdf:type | schema:Person |
97 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
98 | ″ | schema:name | Mathematical Sciences |
99 | ″ | rdf:type | schema:DefinedTerm |
100 | anzsrc-for:0104 | schema:inDefinedTermSet | anzsrc-for: |
101 | ″ | schema:name | Statistics |
102 | ″ | rdf:type | schema:DefinedTerm |
103 | sg:person.01316567627.91 | schema:affiliation | grid-institutes:grid.5801.c |
104 | ″ | schema:familyName | Maurer |
105 | ″ | schema:givenName | Ueli |
106 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316567627.91 |
107 | ″ | rdf:type | schema:Person |
108 | grid-institutes:grid.5801.c | schema:alternateName | Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland |
109 | ″ | schema:name | Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland |
110 | ″ | rdf:type | schema:Organization |