Coupling of Random Systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2020-12-09

AUTHORS

David Lanzenberger , Ueli Maurer

ABSTRACT

This paper makes three contributions. First, we present a simple theory of random systems. The main idea is to think of a probabilistic system as an equivalence class of distributions over deterministic systems. Second, we demonstrate how in this new theory, the optimal information-theoretic distinguishing advantage between two systems can be characterized merely in terms of the statistical distance of probability distributions, providing a more elementary understanding of the distance of systems. In particular, two systems that are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-close in terms of the best distinguishing advantage can be understood as being equal with probability \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-\epsilon $$\end{document}, a property that holds statically, without even considering a distinguisher, let alone its interaction with the systems. Finally, we exploit this new characterization of the distinguishing advantage to prove that any threshold combiner is an amplifier for indistinguishability in the information-theoretic setting, generalizing and simplifying results from Maurer, Pietrzak, and Renner (CRYPTO 2007). More... »

PAGES

207-240

Book

TITLE

Theory of Cryptography

ISBN

978-3-030-64380-5
978-3-030-64381-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-64381-2_8

DOI

http://dx.doi.org/10.1007/978-3-030-64381-2_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1133467855


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lanzenberger", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maurer", 
        "givenName": "Ueli", 
        "id": "sg:person.01316567627.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316567627.91"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2020-12-09", 
    "datePublishedReg": "2020-12-09", 
    "description": "This paper makes three contributions. First, we present a simple theory of random systems. The main idea is to think of a probabilistic system as an equivalence class of distributions over deterministic systems. Second, we demonstrate how in this new theory, the optimal information-theoretic distinguishing advantage between two systems can be characterized merely in terms of the statistical distance of probability distributions, providing a more elementary understanding of the distance of systems. In particular, two systems that are \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon $$\\end{document}-close in terms of the best distinguishing advantage can be understood as being equal with probability \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$1-\\epsilon $$\\end{document}, a property that holds statically, without even considering a distinguisher, let alone its interaction with the systems. Finally, we exploit this new characterization of the distinguishing advantage to prove that any threshold combiner is an amplifier for indistinguishability in the information-theoretic setting, generalizing and simplifying results from Maurer, Pietrzak, and Renner (CRYPTO\u00a02007).", 
    "editor": [
      {
        "familyName": "Pass", 
        "givenName": "Rafael", 
        "type": "Person"
      }, 
      {
        "familyName": "Pietrzak", 
        "givenName": "Krzysztof", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-64381-2_8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-64380-5", 
        "978-3-030-64381-2"
      ], 
      "name": "Theory of Cryptography", 
      "type": "Book"
    }, 
    "keywords": [
      "random systems", 
      "deterministic system", 
      "statistical distance", 
      "probability distribution", 
      "probabilistic systems", 
      "equivalence classes", 
      "new characterization", 
      "simple theory", 
      "information-theoretic setting", 
      "main idea", 
      "new theory", 
      "theory", 
      "elementary understanding", 
      "system", 
      "distribution", 
      "terms", 
      "generalizing", 
      "probability", 
      "class", 
      "indistinguishability", 
      "coupling", 
      "distance", 
      "advantages", 
      "Renner", 
      "combiner", 
      "properties", 
      "Maurer", 
      "distinguisher", 
      "idea", 
      "close", 
      "amplifier", 
      "results", 
      "contribution", 
      "Pietrzak", 
      "interaction", 
      "characterization", 
      "setting", 
      "understanding", 
      "paper"
    ], 
    "name": "Coupling of Random Systems", 
    "pagination": "207-240", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1133467855"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-64381-2_8"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-64381-2_8", 
      "https://app.dimensions.ai/details/publication/pub.1133467855"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_415.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-64381-2_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-64381-2_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-64381-2_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-64381-2_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-64381-2_8'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      23 PREDICATES      64 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-64381-2_8 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nbcc362e63392456fb7c2bd88975a5a42
4 schema:datePublished 2020-12-09
5 schema:datePublishedReg 2020-12-09
6 schema:description This paper makes three contributions. First, we present a simple theory of random systems. The main idea is to think of a probabilistic system as an equivalence class of distributions over deterministic systems. Second, we demonstrate how in this new theory, the optimal information-theoretic distinguishing advantage between two systems can be characterized merely in terms of the statistical distance of probability distributions, providing a more elementary understanding of the distance of systems. In particular, two systems that are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-close in terms of the best distinguishing advantage can be understood as being equal with probability \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-\epsilon $$\end{document}, a property that holds statically, without even considering a distinguisher, let alone its interaction with the systems. Finally, we exploit this new characterization of the distinguishing advantage to prove that any threshold combiner is an amplifier for indistinguishability in the information-theoretic setting, generalizing and simplifying results from Maurer, Pietrzak, and Renner (CRYPTO 2007).
7 schema:editor N4a3a8fc494194f89b6c035c978c9a28a
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N5af43f289ffd4d7585e005180f60c295
12 schema:keywords Maurer
13 Pietrzak
14 Renner
15 advantages
16 amplifier
17 characterization
18 class
19 close
20 combiner
21 contribution
22 coupling
23 deterministic system
24 distance
25 distinguisher
26 distribution
27 elementary understanding
28 equivalence classes
29 generalizing
30 idea
31 indistinguishability
32 information-theoretic setting
33 interaction
34 main idea
35 new characterization
36 new theory
37 paper
38 probabilistic systems
39 probability
40 probability distribution
41 properties
42 random systems
43 results
44 setting
45 simple theory
46 statistical distance
47 system
48 terms
49 theory
50 understanding
51 schema:name Coupling of Random Systems
52 schema:pagination 207-240
53 schema:productId N65215dc4fadb49eabafcae9a5b3a5b82
54 N9bbaca52a0374170b924bd599d3a3f1b
55 schema:publisher N290064f0016d4e95bd0702b6063f5185
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1133467855
57 https://doi.org/10.1007/978-3-030-64381-2_8
58 schema:sdDatePublished 2022-05-10T10:51
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N14c33683d3544d55b727902b2255b10e
61 schema:url https://doi.org/10.1007/978-3-030-64381-2_8
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N14c33683d3544d55b727902b2255b10e schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N290064f0016d4e95bd0702b6063f5185 schema:name Springer Nature
68 rdf:type schema:Organisation
69 N39fd73eba08440f0a99c60ef9fc6d605 schema:familyName Pass
70 schema:givenName Rafael
71 rdf:type schema:Person
72 N4a3a8fc494194f89b6c035c978c9a28a rdf:first N39fd73eba08440f0a99c60ef9fc6d605
73 rdf:rest Nb500367ac17241c6ae2e333f72199cb8
74 N5af43f289ffd4d7585e005180f60c295 schema:isbn 978-3-030-64380-5
75 978-3-030-64381-2
76 schema:name Theory of Cryptography
77 rdf:type schema:Book
78 N65215dc4fadb49eabafcae9a5b3a5b82 schema:name doi
79 schema:value 10.1007/978-3-030-64381-2_8
80 rdf:type schema:PropertyValue
81 N8e1360b2c270474d934660574b49dc7e rdf:first sg:person.01316567627.91
82 rdf:rest rdf:nil
83 N9bbaca52a0374170b924bd599d3a3f1b schema:name dimensions_id
84 schema:value pub.1133467855
85 rdf:type schema:PropertyValue
86 Nb500367ac17241c6ae2e333f72199cb8 rdf:first Ncb3aeff9b41d4a538f95eb41cba31eb2
87 rdf:rest rdf:nil
88 Nbcc362e63392456fb7c2bd88975a5a42 rdf:first Nf219ec4072c64e6fb00506581a516076
89 rdf:rest N8e1360b2c270474d934660574b49dc7e
90 Ncb3aeff9b41d4a538f95eb41cba31eb2 schema:familyName Pietrzak
91 schema:givenName Krzysztof
92 rdf:type schema:Person
93 Nf219ec4072c64e6fb00506581a516076 schema:affiliation grid-institutes:grid.5801.c
94 schema:familyName Lanzenberger
95 schema:givenName David
96 rdf:type schema:Person
97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
98 schema:name Mathematical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
101 schema:name Statistics
102 rdf:type schema:DefinedTerm
103 sg:person.01316567627.91 schema:affiliation grid-institutes:grid.5801.c
104 schema:familyName Maurer
105 schema:givenName Ueli
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316567627.91
107 rdf:type schema:Person
108 grid-institutes:grid.5801.c schema:alternateName Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland
109 schema:name Department of Computer Science, ETH Zurich, 8092, Zurich, Switzerland
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...