A Review of Two Network Curvature Measures View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2020-09-30

AUTHORS

Tanima Chatterjee , Bhaskar DasGupta , Réka Albert

ABSTRACT

The curvature of higher-dimensional geometric shapes and topological spaces is a natural and powerful generalization of its simpler counterpart in planes and other two-dimensional spaces. Curvature plays a fundamental role in physics, mathematics, and many other areas. However, graphs are discrete objects that do not necessarily have an associated natural geometric embedding. There are many ways in which curvature definitions of a continuous surface or other similar space can be adapted to graphs depending on what kind of local or global properties the measure is desired to reflect. In this chapter, we review two such measures, namely the Gromov-hyperbolic curvature measure and a geometric measure based on topological associations to higher-dimensional complexes. More... »

PAGES

51-69

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-61732-5_3

DOI

http://dx.doi.org/10.1007/978-3-030-61732-5_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1135780171


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.185648.6", 
          "name": [
            "Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chatterjee", 
        "givenName": "Tanima", 
        "id": "sg:person.07403364123.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07403364123.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.185648.6", 
          "name": [
            "Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "DasGupta", 
        "givenName": "Bhaskar", 
        "id": "sg:person.0763403270.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763403270.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Pennsylvania State University, University Park, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Department of Physics, Pennsylvania State University, University Park, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Albert", 
        "givenName": "R\u00e9ka", 
        "id": "sg:person.01017036620.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017036620.03"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2020-09-30", 
    "datePublishedReg": "2020-09-30", 
    "description": "The curvature of higher-dimensional geometric shapes and topological spaces is a natural and powerful generalization of its simpler counterpart in planes and other two-dimensional spaces. Curvature plays a fundamental role in physics, mathematics, and many other areas. However, graphs are discrete objects that do not necessarily have an associated natural geometric embedding. There are many ways in which curvature definitions of a continuous surface or other similar space can be adapted to graphs depending on what kind of local or global properties the measure is desired to reflect. In this chapter, we review two such measures, namely the Gromov-hyperbolic curvature measure and a geometric measure based on topological associations to higher-dimensional complexes.", 
    "editor": [
      {
        "familyName": "Rassias", 
        "givenName": "Themistocles M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Pardalos", 
        "givenName": "Panos M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-61732-5_3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-61731-8", 
        "978-3-030-61732-5"
      ], 
      "name": "Nonlinear Analysis and Global Optimization", 
      "type": "Book"
    }, 
    "keywords": [
      "curvature measures", 
      "curvature definition", 
      "two-dimensional space", 
      "geometric embedding", 
      "powerful generalization", 
      "topological spaces", 
      "global properties", 
      "geometric measure", 
      "high-dimensional complexes", 
      "discrete objects", 
      "simpler counterparts", 
      "geometric shapes", 
      "continuous surface", 
      "space", 
      "curvature", 
      "physics", 
      "mathematics", 
      "similar space", 
      "generalization", 
      "graph", 
      "embedding", 
      "fundamental role", 
      "plane", 
      "objects", 
      "properties", 
      "shape", 
      "kind", 
      "topological association", 
      "such measures", 
      "definition", 
      "measures", 
      "counterparts", 
      "way", 
      "surface", 
      "chapter", 
      "area", 
      "role", 
      "review", 
      "complexes", 
      "association"
    ], 
    "name": "A Review of Two Network Curvature Measures", 
    "pagination": "51-69", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1135780171"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-61732-5_3"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-61732-5_3", 
      "https://app.dimensions.ai/details/publication/pub.1135780171"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_420.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-61732-5_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-61732-5_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-61732-5_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-61732-5_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-61732-5_3'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      23 PREDICATES      64 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-61732-5_3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N73e9e5a7bd114c70898c2c1aba608546
4 schema:datePublished 2020-09-30
5 schema:datePublishedReg 2020-09-30
6 schema:description The curvature of higher-dimensional geometric shapes and topological spaces is a natural and powerful generalization of its simpler counterpart in planes and other two-dimensional spaces. Curvature plays a fundamental role in physics, mathematics, and many other areas. However, graphs are discrete objects that do not necessarily have an associated natural geometric embedding. There are many ways in which curvature definitions of a continuous surface or other similar space can be adapted to graphs depending on what kind of local or global properties the measure is desired to reflect. In this chapter, we review two such measures, namely the Gromov-hyperbolic curvature measure and a geometric measure based on topological associations to higher-dimensional complexes.
7 schema:editor N369808b0ab454e9eb2de0fb644c8248a
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ne0926dadacc24312bbe1917712759af7
12 schema:keywords area
13 association
14 chapter
15 complexes
16 continuous surface
17 counterparts
18 curvature
19 curvature definition
20 curvature measures
21 definition
22 discrete objects
23 embedding
24 fundamental role
25 generalization
26 geometric embedding
27 geometric measure
28 geometric shapes
29 global properties
30 graph
31 high-dimensional complexes
32 kind
33 mathematics
34 measures
35 objects
36 physics
37 plane
38 powerful generalization
39 properties
40 review
41 role
42 shape
43 similar space
44 simpler counterparts
45 space
46 such measures
47 surface
48 topological association
49 topological spaces
50 two-dimensional space
51 way
52 schema:name A Review of Two Network Curvature Measures
53 schema:pagination 51-69
54 schema:productId N5d28ba53658a4d439346a042aa8497df
55 N97a2a27062354c269bb210e464b6e4b1
56 schema:publisher Ndea896d28a9d472caeac4dc29fc102cd
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135780171
58 https://doi.org/10.1007/978-3-030-61732-5_3
59 schema:sdDatePublished 2022-05-10T10:52
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N0abbf766eeb84f87811d7a4fd4489a77
62 schema:url https://doi.org/10.1007/978-3-030-61732-5_3
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N0abbf766eeb84f87811d7a4fd4489a77 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N369808b0ab454e9eb2de0fb644c8248a rdf:first Na62becb8d0b148c1ad3fc08597084f98
69 rdf:rest N56b98480da6c43ccbe81d8d8ee72a2a3
70 N56b98480da6c43ccbe81d8d8ee72a2a3 rdf:first N5c2a7444250d4f5b8221691df0e71a2e
71 rdf:rest rdf:nil
72 N5c2a7444250d4f5b8221691df0e71a2e schema:familyName Pardalos
73 schema:givenName Panos M.
74 rdf:type schema:Person
75 N5d28ba53658a4d439346a042aa8497df schema:name doi
76 schema:value 10.1007/978-3-030-61732-5_3
77 rdf:type schema:PropertyValue
78 N73e9e5a7bd114c70898c2c1aba608546 rdf:first sg:person.07403364123.71
79 rdf:rest N8ab6aa7d60fd42c5a91d86b876a79802
80 N8ab6aa7d60fd42c5a91d86b876a79802 rdf:first sg:person.0763403270.10
81 rdf:rest Nd7e954cb0ec642eb89970f2f5bc70280
82 N97a2a27062354c269bb210e464b6e4b1 schema:name dimensions_id
83 schema:value pub.1135780171
84 rdf:type schema:PropertyValue
85 Na62becb8d0b148c1ad3fc08597084f98 schema:familyName Rassias
86 schema:givenName Themistocles M.
87 rdf:type schema:Person
88 Nd7e954cb0ec642eb89970f2f5bc70280 rdf:first sg:person.01017036620.03
89 rdf:rest rdf:nil
90 Ndea896d28a9d472caeac4dc29fc102cd schema:name Springer Nature
91 rdf:type schema:Organisation
92 Ne0926dadacc24312bbe1917712759af7 schema:isbn 978-3-030-61731-8
93 978-3-030-61732-5
94 schema:name Nonlinear Analysis and Global Optimization
95 rdf:type schema:Book
96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
97 schema:name Mathematical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
100 schema:name Pure Mathematics
101 rdf:type schema:DefinedTerm
102 sg:person.01017036620.03 schema:affiliation grid-institutes:grid.29857.31
103 schema:familyName Albert
104 schema:givenName Réka
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017036620.03
106 rdf:type schema:Person
107 sg:person.07403364123.71 schema:affiliation grid-institutes:grid.185648.6
108 schema:familyName Chatterjee
109 schema:givenName Tanima
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07403364123.71
111 rdf:type schema:Person
112 sg:person.0763403270.10 schema:affiliation grid-institutes:grid.185648.6
113 schema:familyName DasGupta
114 schema:givenName Bhaskar
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763403270.10
116 rdf:type schema:Person
117 grid-institutes:grid.185648.6 schema:alternateName Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
118 schema:name Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
119 rdf:type schema:Organization
120 grid-institutes:grid.29857.31 schema:alternateName Department of Physics, Pennsylvania State University, University Park, PA, USA
121 schema:name Department of Physics, Pennsylvania State University, University Park, PA, USA
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...