InterCriteria Analysis of the Evaporation Parameter Influence on Ant Colony Optimization Algorithm: A Workforce Planning Problem View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2020-12-01

AUTHORS

Olympia Roeva , Stefka Fidanova , Maria Ganzha

ABSTRACT

Roeva, OlympiaFidanova, StefkaGanzha, MariaOptimization of the production process is an important task for every factory or organization. A better organization can be done by optimization of the workforce planing. The main goal is decreasing the assignment cost of the workers with the help of which, the work will be done. The problem is NP-hard, therefore it can be solved with algorithms coming from artificial intelligence. The problem is to select employers and to assign them to the jobs to be performed. The constraints of this problem are very strong and it is difficult to find feasible solutions. We apply Ant Colony Optimization Algorithm (ACO) to solve the problem. We investigate the algorithm performance by changing the evaporation parameter. The aim is to find the best parameter setting. To evaluate the influence of the evaporation parameter on ACO InterCriteria Analysis (ICrA) is applied. ICrA is performed on the ACO results for 10 problems considering average and maximum number of iterations needed to solve the problem. Five different values of evaporation parameter are used. The results show that ACO algorithm has best performance for two values of evaporation parameter – 0.1 and 0.3. More... »

PAGES

89-109

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-58884-7_5

DOI

http://dx.doi.org/10.1007/978-3-030-58884-7_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1132982131


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.493309.4", 
          "name": [
            "Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roeva", 
        "givenName": "Olympia", 
        "id": "sg:person.015745057111.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.410344.6", 
          "name": [
            "Institute of Information and Communication Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "id": "sg:person.011173106320.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "System Research Institute, Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland", 
          "id": "http://www.grid.ac/institutes/grid.413454.3", 
          "name": [
            "System Research Institute, Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ganzha", 
        "givenName": "Maria", 
        "id": "sg:person.012054343730.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012054343730.36"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2020-12-01", 
    "datePublishedReg": "2020-12-01", 
    "description": "Roeva, OlympiaFidanova, StefkaGanzha, MariaOptimization of the production process is an important task for every factory or organization. A better organization can be done by optimization of the workforce planing. The main goal is decreasing the assignment cost of the workers with the help of which, the work will be done. The problem is NP-hard, therefore it can be solved with algorithms coming from artificial intelligence. The problem is to select employers and to assign them to the jobs to be performed. The constraints of this problem are very strong and it is difficult to find feasible solutions. We apply Ant Colony Optimization Algorithm (ACO) to solve the problem. We investigate the algorithm performance by changing the evaporation parameter. The aim is to find the best parameter setting. To evaluate the influence of the evaporation parameter on ACO InterCriteria Analysis (ICrA) is applied. ICrA is performed on the ACO results for 10 problems considering average and maximum number of iterations needed to solve the problem. Five different values of evaporation parameter are used. The results show that ACO algorithm has best performance for two values of evaporation parameter \u2013 0.1 and 0.3.", 
    "editor": [
      {
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-58884-7_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-58883-0", 
        "978-3-030-58884-7"
      ], 
      "name": "Recent Advances in Computational Optimization", 
      "type": "Book"
    }, 
    "keywords": [
      "ant colony optimization algorithm", 
      "colony optimization algorithm", 
      "optimization algorithm", 
      "InterCriteria Analysis", 
      "workforce planning problem", 
      "best parameter settings", 
      "ACO algorithm", 
      "feasible solution", 
      "planning problem", 
      "assignment cost", 
      "evaporation parameters", 
      "algorithm performance", 
      "parameter settings", 
      "different values", 
      "algorithm", 
      "problem", 
      "maximum number", 
      "parameter influence", 
      "parameters", 
      "iteration", 
      "better performance", 
      "main goal", 
      "optimization", 
      "constraints", 
      "important task", 
      "solution", 
      "NPs", 
      "performance", 
      "ICrA", 
      "values", 
      "number", 
      "production process", 
      "help", 
      "analysis", 
      "work", 
      "artificial intelligence", 
      "results", 
      "cost", 
      "influence", 
      "process", 
      "task", 
      "goal", 
      "jobs", 
      "better organization", 
      "setting", 
      "intelligence", 
      "factory", 
      "aim", 
      "planing", 
      "organization", 
      "workers", 
      "employers"
    ], 
    "name": "InterCriteria Analysis of the Evaporation Parameter Influence on Ant Colony Optimization Algorithm: A Workforce Planning Problem", 
    "pagination": "89-109", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1132982131"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-58884-7_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-58884-7_5", 
      "https://app.dimensions.ai/details/publication/pub.1132982131"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_305.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-58884-7_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-58884-7_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-58884-7_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-58884-7_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-58884-7_5'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      23 PREDICATES      77 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-58884-7_5 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N7f3b6a6e3c5b4c03b1ab33072473aa48
4 schema:datePublished 2020-12-01
5 schema:datePublishedReg 2020-12-01
6 schema:description Roeva, OlympiaFidanova, StefkaGanzha, MariaOptimization of the production process is an important task for every factory or organization. A better organization can be done by optimization of the workforce planing. The main goal is decreasing the assignment cost of the workers with the help of which, the work will be done. The problem is NP-hard, therefore it can be solved with algorithms coming from artificial intelligence. The problem is to select employers and to assign them to the jobs to be performed. The constraints of this problem are very strong and it is difficult to find feasible solutions. We apply Ant Colony Optimization Algorithm (ACO) to solve the problem. We investigate the algorithm performance by changing the evaporation parameter. The aim is to find the best parameter setting. To evaluate the influence of the evaporation parameter on ACO InterCriteria Analysis (ICrA) is applied. ICrA is performed on the ACO results for 10 problems considering average and maximum number of iterations needed to solve the problem. Five different values of evaporation parameter are used. The results show that ACO algorithm has best performance for two values of evaporation parameter – 0.1 and 0.3.
7 schema:editor N0e83dc3f5db849e48f2dffd424d28139
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N756fd14aafbb463180e8d7f9409ffe8a
12 schema:keywords ACO algorithm
13 ICrA
14 InterCriteria Analysis
15 NPs
16 aim
17 algorithm
18 algorithm performance
19 analysis
20 ant colony optimization algorithm
21 artificial intelligence
22 assignment cost
23 best parameter settings
24 better organization
25 better performance
26 colony optimization algorithm
27 constraints
28 cost
29 different values
30 employers
31 evaporation parameters
32 factory
33 feasible solution
34 goal
35 help
36 important task
37 influence
38 intelligence
39 iteration
40 jobs
41 main goal
42 maximum number
43 number
44 optimization
45 optimization algorithm
46 organization
47 parameter influence
48 parameter settings
49 parameters
50 performance
51 planing
52 planning problem
53 problem
54 process
55 production process
56 results
57 setting
58 solution
59 task
60 values
61 work
62 workers
63 workforce planning problem
64 schema:name InterCriteria Analysis of the Evaporation Parameter Influence on Ant Colony Optimization Algorithm: A Workforce Planning Problem
65 schema:pagination 89-109
66 schema:productId N72f2e10feed74161a80a740c8e6988c1
67 Na9bfc5967bba4ae79a4cbd30ca1aadb8
68 schema:publisher N178f4db475284a2d8612992de9aafb88
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132982131
70 https://doi.org/10.1007/978-3-030-58884-7_5
71 schema:sdDatePublished 2022-05-20T07:45
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Nd548b57aff0c45e5af241621e7e77931
74 schema:url https://doi.org/10.1007/978-3-030-58884-7_5
75 sgo:license sg:explorer/license/
76 sgo:sdDataset chapters
77 rdf:type schema:Chapter
78 N0e83dc3f5db849e48f2dffd424d28139 rdf:first Nb39f401b0bbb4c6198b49a0c43425001
79 rdf:rest rdf:nil
80 N178f4db475284a2d8612992de9aafb88 schema:name Springer Nature
81 rdf:type schema:Organisation
82 N72f2e10feed74161a80a740c8e6988c1 schema:name doi
83 schema:value 10.1007/978-3-030-58884-7_5
84 rdf:type schema:PropertyValue
85 N756fd14aafbb463180e8d7f9409ffe8a schema:isbn 978-3-030-58883-0
86 978-3-030-58884-7
87 schema:name Recent Advances in Computational Optimization
88 rdf:type schema:Book
89 N7f3b6a6e3c5b4c03b1ab33072473aa48 rdf:first sg:person.015745057111.08
90 rdf:rest Ne7c37a73a83e46419286aa4b63d7dbf9
91 Na9bfc5967bba4ae79a4cbd30ca1aadb8 schema:name dimensions_id
92 schema:value pub.1132982131
93 rdf:type schema:PropertyValue
94 Nb39f401b0bbb4c6198b49a0c43425001 schema:familyName Fidanova
95 schema:givenName Stefka
96 rdf:type schema:Person
97 Nd548b57aff0c45e5af241621e7e77931 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Ne372105cbf1548f2a6b989b94bc69aef rdf:first sg:person.012054343730.36
100 rdf:rest rdf:nil
101 Ne7c37a73a83e46419286aa4b63d7dbf9 rdf:first sg:person.011173106320.18
102 rdf:rest Ne372105cbf1548f2a6b989b94bc69aef
103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
104 schema:name Information and Computing Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
107 schema:name Computation Theory and Mathematics
108 rdf:type schema:DefinedTerm
109 sg:person.011173106320.18 schema:affiliation grid-institutes:grid.410344.6
110 schema:familyName Fidanova
111 schema:givenName Stefka
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18
113 rdf:type schema:Person
114 sg:person.012054343730.36 schema:affiliation grid-institutes:grid.413454.3
115 schema:familyName Ganzha
116 schema:givenName Maria
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012054343730.36
118 rdf:type schema:Person
119 sg:person.015745057111.08 schema:affiliation grid-institutes:grid.493309.4
120 schema:familyName Roeva
121 schema:givenName Olympia
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08
123 rdf:type schema:Person
124 grid-institutes:grid.410344.6 schema:alternateName Institute of Information and Communication Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria
125 schema:name Institute of Information and Communication Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria
126 rdf:type schema:Organization
127 grid-institutes:grid.413454.3 schema:alternateName System Research Institute, Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland
128 schema:name System Research Institute, Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland
129 rdf:type schema:Organization
130 grid-institutes:grid.493309.4 schema:alternateName Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
131 schema:name Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...