Ontology type: schema:Chapter
2020-12-01
AUTHORSOlympia Roeva , Stefka Fidanova , Maria Ganzha
ABSTRACTRoeva, OlympiaFidanova, StefkaGanzha, MariaOptimization of the production process is an important task for every factory or organization. A better organization can be done by optimization of the workforce planing. The main goal is decreasing the assignment cost of the workers with the help of which, the work will be done. The problem is NP-hard, therefore it can be solved with algorithms coming from artificial intelligence. The problem is to select employers and to assign them to the jobs to be performed. The constraints of this problem are very strong and it is difficult to find feasible solutions. We apply Ant Colony Optimization Algorithm (ACO) to solve the problem. We investigate the algorithm performance by changing the evaporation parameter. The aim is to find the best parameter setting. To evaluate the influence of the evaporation parameter on ACO InterCriteria Analysis (ICrA) is applied. ICrA is performed on the ACO results for 10 problems considering average and maximum number of iterations needed to solve the problem. Five different values of evaporation parameter are used. The results show that ACO algorithm has best performance for two values of evaporation parameter – 0.1 and 0.3. More... »
PAGES89-109
Recent Advances in Computational Optimization
ISBN
978-3-030-58883-0
978-3-030-58884-7
http://scigraph.springernature.com/pub.10.1007/978-3-030-58884-7_5
DOIhttp://dx.doi.org/10.1007/978-3-030-58884-7_5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1132982131
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.493309.4",
"name": [
"Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Roeva",
"givenName": "Olympia",
"id": "sg:person.015745057111.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Information and Communication Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.410344.6",
"name": [
"Institute of Information and Communication Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Fidanova",
"givenName": "Stefka",
"id": "sg:person.011173106320.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "System Research Institute, Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland",
"id": "http://www.grid.ac/institutes/grid.413454.3",
"name": [
"System Research Institute, Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland"
],
"type": "Organization"
},
"familyName": "Ganzha",
"givenName": "Maria",
"id": "sg:person.012054343730.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012054343730.36"
],
"type": "Person"
}
],
"datePublished": "2020-12-01",
"datePublishedReg": "2020-12-01",
"description": "Roeva, OlympiaFidanova, StefkaGanzha, MariaOptimization of the production process is an important task for every factory or organization. A better organization can be done by optimization of the workforce planing. The main goal is decreasing the assignment cost of the workers with the help of which, the work will be done. The problem is NP-hard, therefore it can be solved with algorithms coming from artificial intelligence. The problem is to select employers and to assign them to the jobs to be performed. The constraints of this problem are very strong and it is difficult to find feasible solutions. We apply Ant Colony Optimization Algorithm (ACO) to solve the problem. We investigate the algorithm performance by changing the evaporation parameter. The aim is to find the best parameter setting. To evaluate the influence of the evaporation parameter on ACO InterCriteria Analysis (ICrA) is applied. ICrA is performed on the ACO results for 10 problems considering average and maximum number of iterations needed to solve the problem. Five different values of evaporation parameter are used. The results show that ACO algorithm has best performance for two values of evaporation parameter \u2013 0.1 and 0.3.",
"editor": [
{
"familyName": "Fidanova",
"givenName": "Stefka",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-58884-7_5",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-58883-0",
"978-3-030-58884-7"
],
"name": "Recent Advances in Computational Optimization",
"type": "Book"
},
"keywords": [
"ant colony optimization algorithm",
"colony optimization algorithm",
"optimization algorithm",
"InterCriteria Analysis",
"workforce planning problem",
"best parameter settings",
"ACO algorithm",
"feasible solution",
"planning problem",
"assignment cost",
"evaporation parameters",
"algorithm performance",
"parameter settings",
"different values",
"algorithm",
"problem",
"maximum number",
"parameter influence",
"parameters",
"iteration",
"better performance",
"main goal",
"optimization",
"constraints",
"important task",
"solution",
"NPs",
"performance",
"ICrA",
"values",
"number",
"production process",
"help",
"analysis",
"work",
"artificial intelligence",
"results",
"cost",
"influence",
"process",
"task",
"goal",
"jobs",
"better organization",
"setting",
"intelligence",
"factory",
"aim",
"planing",
"organization",
"workers",
"employers"
],
"name": "InterCriteria Analysis of the Evaporation Parameter Influence on Ant Colony Optimization Algorithm: A Workforce Planning Problem",
"pagination": "89-109",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1132982131"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-58884-7_5"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-58884-7_5",
"https://app.dimensions.ai/details/publication/pub.1132982131"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:45",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_305.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-58884-7_5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-58884-7_5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-58884-7_5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-58884-7_5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-58884-7_5'
This table displays all metadata directly associated to this object as RDF triples.
132 TRIPLES
23 PREDICATES
77 URIs
70 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-58884-7_5 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0802 |
3 | ″ | schema:author | N7f3b6a6e3c5b4c03b1ab33072473aa48 |
4 | ″ | schema:datePublished | 2020-12-01 |
5 | ″ | schema:datePublishedReg | 2020-12-01 |
6 | ″ | schema:description | Roeva, OlympiaFidanova, StefkaGanzha, MariaOptimization of the production process is an important task for every factory or organization. A better organization can be done by optimization of the workforce planing. The main goal is decreasing the assignment cost of the workers with the help of which, the work will be done. The problem is NP-hard, therefore it can be solved with algorithms coming from artificial intelligence. The problem is to select employers and to assign them to the jobs to be performed. The constraints of this problem are very strong and it is difficult to find feasible solutions. We apply Ant Colony Optimization Algorithm (ACO) to solve the problem. We investigate the algorithm performance by changing the evaporation parameter. The aim is to find the best parameter setting. To evaluate the influence of the evaporation parameter on ACO InterCriteria Analysis (ICrA) is applied. ICrA is performed on the ACO results for 10 problems considering average and maximum number of iterations needed to solve the problem. Five different values of evaporation parameter are used. The results show that ACO algorithm has best performance for two values of evaporation parameter – 0.1 and 0.3. |
7 | ″ | schema:editor | N0e83dc3f5db849e48f2dffd424d28139 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N756fd14aafbb463180e8d7f9409ffe8a |
12 | ″ | schema:keywords | ACO algorithm |
13 | ″ | ″ | ICrA |
14 | ″ | ″ | InterCriteria Analysis |
15 | ″ | ″ | NPs |
16 | ″ | ″ | aim |
17 | ″ | ″ | algorithm |
18 | ″ | ″ | algorithm performance |
19 | ″ | ″ | analysis |
20 | ″ | ″ | ant colony optimization algorithm |
21 | ″ | ″ | artificial intelligence |
22 | ″ | ″ | assignment cost |
23 | ″ | ″ | best parameter settings |
24 | ″ | ″ | better organization |
25 | ″ | ″ | better performance |
26 | ″ | ″ | colony optimization algorithm |
27 | ″ | ″ | constraints |
28 | ″ | ″ | cost |
29 | ″ | ″ | different values |
30 | ″ | ″ | employers |
31 | ″ | ″ | evaporation parameters |
32 | ″ | ″ | factory |
33 | ″ | ″ | feasible solution |
34 | ″ | ″ | goal |
35 | ″ | ″ | help |
36 | ″ | ″ | important task |
37 | ″ | ″ | influence |
38 | ″ | ″ | intelligence |
39 | ″ | ″ | iteration |
40 | ″ | ″ | jobs |
41 | ″ | ″ | main goal |
42 | ″ | ″ | maximum number |
43 | ″ | ″ | number |
44 | ″ | ″ | optimization |
45 | ″ | ″ | optimization algorithm |
46 | ″ | ″ | organization |
47 | ″ | ″ | parameter influence |
48 | ″ | ″ | parameter settings |
49 | ″ | ″ | parameters |
50 | ″ | ″ | performance |
51 | ″ | ″ | planing |
52 | ″ | ″ | planning problem |
53 | ″ | ″ | problem |
54 | ″ | ″ | process |
55 | ″ | ″ | production process |
56 | ″ | ″ | results |
57 | ″ | ″ | setting |
58 | ″ | ″ | solution |
59 | ″ | ″ | task |
60 | ″ | ″ | values |
61 | ″ | ″ | work |
62 | ″ | ″ | workers |
63 | ″ | ″ | workforce planning problem |
64 | ″ | schema:name | InterCriteria Analysis of the Evaporation Parameter Influence on Ant Colony Optimization Algorithm: A Workforce Planning Problem |
65 | ″ | schema:pagination | 89-109 |
66 | ″ | schema:productId | N72f2e10feed74161a80a740c8e6988c1 |
67 | ″ | ″ | Na9bfc5967bba4ae79a4cbd30ca1aadb8 |
68 | ″ | schema:publisher | N178f4db475284a2d8612992de9aafb88 |
69 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1132982131 |
70 | ″ | ″ | https://doi.org/10.1007/978-3-030-58884-7_5 |
71 | ″ | schema:sdDatePublished | 2022-05-20T07:45 |
72 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
73 | ″ | schema:sdPublisher | Nd548b57aff0c45e5af241621e7e77931 |
74 | ″ | schema:url | https://doi.org/10.1007/978-3-030-58884-7_5 |
75 | ″ | sgo:license | sg:explorer/license/ |
76 | ″ | sgo:sdDataset | chapters |
77 | ″ | rdf:type | schema:Chapter |
78 | N0e83dc3f5db849e48f2dffd424d28139 | rdf:first | Nb39f401b0bbb4c6198b49a0c43425001 |
79 | ″ | rdf:rest | rdf:nil |
80 | N178f4db475284a2d8612992de9aafb88 | schema:name | Springer Nature |
81 | ″ | rdf:type | schema:Organisation |
82 | N72f2e10feed74161a80a740c8e6988c1 | schema:name | doi |
83 | ″ | schema:value | 10.1007/978-3-030-58884-7_5 |
84 | ″ | rdf:type | schema:PropertyValue |
85 | N756fd14aafbb463180e8d7f9409ffe8a | schema:isbn | 978-3-030-58883-0 |
86 | ″ | ″ | 978-3-030-58884-7 |
87 | ″ | schema:name | Recent Advances in Computational Optimization |
88 | ″ | rdf:type | schema:Book |
89 | N7f3b6a6e3c5b4c03b1ab33072473aa48 | rdf:first | sg:person.015745057111.08 |
90 | ″ | rdf:rest | Ne7c37a73a83e46419286aa4b63d7dbf9 |
91 | Na9bfc5967bba4ae79a4cbd30ca1aadb8 | schema:name | dimensions_id |
92 | ″ | schema:value | pub.1132982131 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | Nb39f401b0bbb4c6198b49a0c43425001 | schema:familyName | Fidanova |
95 | ″ | schema:givenName | Stefka |
96 | ″ | rdf:type | schema:Person |
97 | Nd548b57aff0c45e5af241621e7e77931 | schema:name | Springer Nature - SN SciGraph project |
98 | ″ | rdf:type | schema:Organization |
99 | Ne372105cbf1548f2a6b989b94bc69aef | rdf:first | sg:person.012054343730.36 |
100 | ″ | rdf:rest | rdf:nil |
101 | Ne7c37a73a83e46419286aa4b63d7dbf9 | rdf:first | sg:person.011173106320.18 |
102 | ″ | rdf:rest | Ne372105cbf1548f2a6b989b94bc69aef |
103 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
104 | ″ | schema:name | Information and Computing Sciences |
105 | ″ | rdf:type | schema:DefinedTerm |
106 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
107 | ″ | schema:name | Computation Theory and Mathematics |
108 | ″ | rdf:type | schema:DefinedTerm |
109 | sg:person.011173106320.18 | schema:affiliation | grid-institutes:grid.410344.6 |
110 | ″ | schema:familyName | Fidanova |
111 | ″ | schema:givenName | Stefka |
112 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18 |
113 | ″ | rdf:type | schema:Person |
114 | sg:person.012054343730.36 | schema:affiliation | grid-institutes:grid.413454.3 |
115 | ″ | schema:familyName | Ganzha |
116 | ″ | schema:givenName | Maria |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012054343730.36 |
118 | ″ | rdf:type | schema:Person |
119 | sg:person.015745057111.08 | schema:affiliation | grid-institutes:grid.493309.4 |
120 | ″ | schema:familyName | Roeva |
121 | ″ | schema:givenName | Olympia |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08 |
123 | ″ | rdf:type | schema:Person |
124 | grid-institutes:grid.410344.6 | schema:alternateName | Institute of Information and Communication Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria |
125 | ″ | schema:name | Institute of Information and Communication Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria |
126 | ″ | rdf:type | schema:Organization |
127 | grid-institutes:grid.413454.3 | schema:alternateName | System Research Institute, Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland |
128 | ″ | schema:name | System Research Institute, Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland |
129 | ″ | rdf:type | schema:Organization |
130 | grid-institutes:grid.493309.4 | schema:alternateName | Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria |
131 | ″ | schema:name | Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria |
132 | ″ | rdf:type | schema:Organization |