Ontology type: schema:Chapter Open Access: True
2020-08-10
AUTHORSYael Tauman Kalai , Omer Paneth , Lisa Yang
ABSTRACTIn this work, we construct an updatable and unambiguous delegation scheme based on the decisional assumption on bilinear groups introduced by Kalai, Paneth and Yang [STOC 2019]. Using this delegation scheme, we show PPAD-hardness (and hence the hardness of computing Nash equilibria) based on the quasi-polynomial hardness of this bilinear group assumption and any hard language that is decidable in quasi-polynomial time and polynomial space.The delegation scheme is for super-polynomial time deterministic computations and is publicly verifiable and non-interactive in the common reference string (CRS) model. It is updatable meaning that given a proof for the statement that a Turing machine reaches some configuration C in T steps, it is efficient to update it into a proof for the statement that the machine reaches the next configuration \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C'$$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T+1$$\end{document} steps. It is unambiguous meaning that it is hard to find two different proofs for the same statement. More... »
PAGES652-673
Advances in Cryptology – CRYPTO 2020
ISBN
978-3-030-56876-4
978-3-030-56877-1
http://scigraph.springernature.com/pub.10.1007/978-3-030-56877-1_23
DOIhttp://dx.doi.org/10.1007/978-3-030-56877-1_23
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1130050081
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "MIT, Cambridge, USA",
"id": "http://www.grid.ac/institutes/grid.116068.8",
"name": [
"Microsoft Research, Cambridge, USA",
"MIT, Cambridge, USA"
],
"type": "Organization"
},
"familyName": "Kalai",
"givenName": "Yael Tauman",
"id": "sg:person.015074540743.62",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015074540743.62"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Tel Aviv University, Tel Aviv, Israel",
"id": "http://www.grid.ac/institutes/grid.12136.37",
"name": [
"Tel Aviv University, Tel Aviv, Israel"
],
"type": "Organization"
},
"familyName": "Paneth",
"givenName": "Omer",
"id": "sg:person.014073524511.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073524511.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "MIT, Cambridge, USA",
"id": "http://www.grid.ac/institutes/grid.116068.8",
"name": [
"MIT, Cambridge, USA"
],
"type": "Organization"
},
"familyName": "Yang",
"givenName": "Lisa",
"id": "sg:person.015330373527.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015330373527.13"
],
"type": "Person"
}
],
"datePublished": "2020-08-10",
"datePublishedReg": "2020-08-10",
"description": "In this work, we construct an updatable and unambiguous delegation scheme based on the decisional assumption on bilinear groups introduced by Kalai, Paneth and Yang [STOC 2019]. Using this delegation scheme, we show PPAD-hardness (and hence the hardness of computing Nash equilibria) based on the quasi-polynomial hardness of this bilinear group assumption and any hard language that is decidable in quasi-polynomial time and polynomial space.The delegation scheme is for super-polynomial time deterministic computations and is publicly verifiable and non-interactive in the common reference string (CRS) model. It is updatable meaning that given a proof for the statement that a Turing machine reaches some configuration C in T steps, it is efficient to update it into a proof for the statement that the machine reaches the next configuration \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$C'$$\\end{document} in \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$T+1$$\\end{document} steps. It is unambiguous meaning that it is hard to find two different proofs for the same statement.",
"editor": [
{
"familyName": "Micciancio",
"givenName": "Daniele",
"type": "Person"
},
{
"familyName": "Ristenpart",
"givenName": "Thomas",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-56877-1_23",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-030-56876-4",
"978-3-030-56877-1"
],
"name": "Advances in Cryptology \u2013 CRYPTO 2020",
"type": "Book"
},
"keywords": [
"delegation scheme",
"PPAD hardness",
"quasi-polynomial hardness",
"common reference string model",
"bilinear groups",
"quasi-polynomial time",
"decisional assumption",
"Turing machines",
"unambiguous meaning",
"next configuration",
"deterministic computation",
"polynomial space",
"machine",
"hard languages",
"group assumptions",
"scheme",
"T steps",
"proof",
"computation",
"language",
"configuration C",
"delegation",
"step",
"Kalai",
"space",
"work",
"assumption",
"model",
"statements",
"different proof",
"configuration",
"meaning",
"same statement",
"string model",
"time",
"Yang",
"group",
"hardness",
"Paneth",
"unambiguous proof"
],
"name": "Delegation with Updatable Unambiguous Proofs and PPAD-Hardness",
"pagination": "652-673",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1130050081"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-56877-1_23"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-56877-1_23",
"https://app.dimensions.ai/details/publication/pub.1130050081"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_22.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-56877-1_23"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-56877-1_23'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-56877-1_23'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-56877-1_23'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-56877-1_23'
This table displays all metadata directly associated to this object as RDF triples.
123 TRIPLES
23 PREDICATES
65 URIs
58 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-56877-1_23 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0802 |
3 | ″ | schema:author | Nc6dd51aacc5a4f419e612daf7ac06e74 |
4 | ″ | schema:datePublished | 2020-08-10 |
5 | ″ | schema:datePublishedReg | 2020-08-10 |
6 | ″ | schema:description | In this work, we construct an updatable and unambiguous delegation scheme based on the decisional assumption on bilinear groups introduced by Kalai, Paneth and Yang [STOC 2019]. Using this delegation scheme, we show PPAD-hardness (and hence the hardness of computing Nash equilibria) based on the quasi-polynomial hardness of this bilinear group assumption and any hard language that is decidable in quasi-polynomial time and polynomial space.The delegation scheme is for super-polynomial time deterministic computations and is publicly verifiable and non-interactive in the common reference string (CRS) model. It is updatable meaning that given a proof for the statement that a Turing machine reaches some configuration C in T steps, it is efficient to update it into a proof for the statement that the machine reaches the next configuration \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C'$$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T+1$$\end{document} steps. It is unambiguous meaning that it is hard to find two different proofs for the same statement. |
7 | ″ | schema:editor | Nd2000c8d31734b40840c5e4f36dc5b94 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | N071f322ad70d4b3fbc85f118e7cdb47b |
12 | ″ | schema:keywords | Kalai |
13 | ″ | ″ | PPAD hardness |
14 | ″ | ″ | Paneth |
15 | ″ | ″ | T steps |
16 | ″ | ″ | Turing machines |
17 | ″ | ″ | Yang |
18 | ″ | ″ | assumption |
19 | ″ | ″ | bilinear groups |
20 | ″ | ″ | common reference string model |
21 | ″ | ″ | computation |
22 | ″ | ″ | configuration |
23 | ″ | ″ | configuration C |
24 | ″ | ″ | decisional assumption |
25 | ″ | ″ | delegation |
26 | ″ | ″ | delegation scheme |
27 | ″ | ″ | deterministic computation |
28 | ″ | ″ | different proof |
29 | ″ | ″ | group |
30 | ″ | ″ | group assumptions |
31 | ″ | ″ | hard languages |
32 | ″ | ″ | hardness |
33 | ″ | ″ | language |
34 | ″ | ″ | machine |
35 | ″ | ″ | meaning |
36 | ″ | ″ | model |
37 | ″ | ″ | next configuration |
38 | ″ | ″ | polynomial space |
39 | ″ | ″ | proof |
40 | ″ | ″ | quasi-polynomial hardness |
41 | ″ | ″ | quasi-polynomial time |
42 | ″ | ″ | same statement |
43 | ″ | ″ | scheme |
44 | ″ | ″ | space |
45 | ″ | ″ | statements |
46 | ″ | ″ | step |
47 | ″ | ″ | string model |
48 | ″ | ″ | time |
49 | ″ | ″ | unambiguous meaning |
50 | ″ | ″ | unambiguous proof |
51 | ″ | ″ | work |
52 | ″ | schema:name | Delegation with Updatable Unambiguous Proofs and PPAD-Hardness |
53 | ″ | schema:pagination | 652-673 |
54 | ″ | schema:productId | N447cfbce30f2478180d2e5ca08ee3edc |
55 | ″ | ″ | N58add775d1744cd08e978379c28b914e |
56 | ″ | schema:publisher | N856b47ee9e134a6a994cb95deea01931 |
57 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1130050081 |
58 | ″ | ″ | https://doi.org/10.1007/978-3-030-56877-1_23 |
59 | ″ | schema:sdDatePublished | 2022-06-01T22:29 |
60 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
61 | ″ | schema:sdPublisher | N6a20da0473304f848d749e2a4f155f44 |
62 | ″ | schema:url | https://doi.org/10.1007/978-3-030-56877-1_23 |
63 | ″ | sgo:license | sg:explorer/license/ |
64 | ″ | sgo:sdDataset | chapters |
65 | ″ | rdf:type | schema:Chapter |
66 | N071f322ad70d4b3fbc85f118e7cdb47b | schema:isbn | 978-3-030-56876-4 |
67 | ″ | ″ | 978-3-030-56877-1 |
68 | ″ | schema:name | Advances in Cryptology – CRYPTO 2020 |
69 | ″ | rdf:type | schema:Book |
70 | N09b096006e964dd5a6b3a3252f4907d1 | rdf:first | sg:person.014073524511.68 |
71 | ″ | rdf:rest | N70915f3ed86244e0b56a3070161e7b83 |
72 | N447cfbce30f2478180d2e5ca08ee3edc | schema:name | dimensions_id |
73 | ″ | schema:value | pub.1130050081 |
74 | ″ | rdf:type | schema:PropertyValue |
75 | N548a7ea4896c437b820ef72bbb3a0754 | schema:familyName | Ristenpart |
76 | ″ | schema:givenName | Thomas |
77 | ″ | rdf:type | schema:Person |
78 | N58add775d1744cd08e978379c28b914e | schema:name | doi |
79 | ″ | schema:value | 10.1007/978-3-030-56877-1_23 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | N5c1f1b0ed0f24617afd8beb726e5de49 | rdf:first | N548a7ea4896c437b820ef72bbb3a0754 |
82 | ″ | rdf:rest | rdf:nil |
83 | N60455f3e2faf4f5393d8937045ddf9bb | schema:familyName | Micciancio |
84 | ″ | schema:givenName | Daniele |
85 | ″ | rdf:type | schema:Person |
86 | N6a20da0473304f848d749e2a4f155f44 | schema:name | Springer Nature - SN SciGraph project |
87 | ″ | rdf:type | schema:Organization |
88 | N70915f3ed86244e0b56a3070161e7b83 | rdf:first | sg:person.015330373527.13 |
89 | ″ | rdf:rest | rdf:nil |
90 | N856b47ee9e134a6a994cb95deea01931 | schema:name | Springer Nature |
91 | ″ | rdf:type | schema:Organisation |
92 | Nc6dd51aacc5a4f419e612daf7ac06e74 | rdf:first | sg:person.015074540743.62 |
93 | ″ | rdf:rest | N09b096006e964dd5a6b3a3252f4907d1 |
94 | Nd2000c8d31734b40840c5e4f36dc5b94 | rdf:first | N60455f3e2faf4f5393d8937045ddf9bb |
95 | ″ | rdf:rest | N5c1f1b0ed0f24617afd8beb726e5de49 |
96 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
97 | ″ | schema:name | Information and Computing Sciences |
98 | ″ | rdf:type | schema:DefinedTerm |
99 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
100 | ″ | schema:name | Computation Theory and Mathematics |
101 | ″ | rdf:type | schema:DefinedTerm |
102 | sg:person.014073524511.68 | schema:affiliation | grid-institutes:grid.12136.37 |
103 | ″ | schema:familyName | Paneth |
104 | ″ | schema:givenName | Omer |
105 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073524511.68 |
106 | ″ | rdf:type | schema:Person |
107 | sg:person.015074540743.62 | schema:affiliation | grid-institutes:grid.116068.8 |
108 | ″ | schema:familyName | Kalai |
109 | ″ | schema:givenName | Yael Tauman |
110 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015074540743.62 |
111 | ″ | rdf:type | schema:Person |
112 | sg:person.015330373527.13 | schema:affiliation | grid-institutes:grid.116068.8 |
113 | ″ | schema:familyName | Yang |
114 | ″ | schema:givenName | Lisa |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015330373527.13 |
116 | ″ | rdf:type | schema:Person |
117 | grid-institutes:grid.116068.8 | schema:alternateName | MIT, Cambridge, USA |
118 | ″ | schema:name | MIT, Cambridge, USA |
119 | ″ | ″ | Microsoft Research, Cambridge, USA |
120 | ″ | rdf:type | schema:Organization |
121 | grid-institutes:grid.12136.37 | schema:alternateName | Tel Aviv University, Tel Aviv, Israel |
122 | ″ | schema:name | Tel Aviv University, Tel Aviv, Israel |
123 | ″ | rdf:type | schema:Organization |