Analysis of Pedestrian Motion Using Voronoi Diagrams in Complex Geometries View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2020-11-17

AUTHORS

Mohcine Chraibi , Bernhard Steffen , Antoine Tordeux

ABSTRACT

VoronoiChraibi, MohcineSteffen, BernhardTordeux, Antoine diagrams are an established method in the analysis of pedestrian motion for constructing a density from two-dimensional positions. It is in turn used to give pointwise values for speed, movement direction, flow etc. The method was first described for high-density situations inside a crowd moving in a simple geometry without considering the influence of walls. However, more complicated distance calculations are needed for more complicated geometries where there are several obstacles or corners. In addition, partially empty spaces also require special treatment to avoid excessively big cells. These problems can lead to estimation errors when not handled correctly in subsequent use. In this work, we give details on how to adapt the calculations of Voronoi diagrams to make them fit for the presence of walls and obstacles in complex geometries. Furthermore, we show how that for persons at the edge of a group the personal space can be reasonably restricted. Based on these modifications, having pointwise values for quantities of interest allows to give average values for arbitrary geometries, not just for lines or rectangles of measurements. However, in order to obtain reasonable measurement values, different quantities may need different kind of averages—arithmetic or harmonic, or weighted with density. More... »

PAGES

39-44

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-55973-1_5

DOI

http://dx.doi.org/10.1007/978-3-030-55973-1_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1132659332


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Civil Safety Research, Institute for Advanced Simulation, Forschungszentrum J\u00fclich GmbH, J\u00fclich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Civil Safety Research, Institute for Advanced Simulation, Forschungszentrum J\u00fclich GmbH, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chraibi", 
        "givenName": "Mohcine", 
        "id": "sg:person.012724113050.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012724113050.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Civil Safety Research, Institute for Advanced Simulation, Forschungszentrum J\u00fclich GmbH, J\u00fclich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Civil Safety Research, Institute for Advanced Simulation, Forschungszentrum J\u00fclich GmbH, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steffen", 
        "givenName": "Bernhard", 
        "id": "sg:person.013270457265.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270457265.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division for Traffic Safety and Reliability, University of Wuppertal, Wuppertal, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7787.f", 
          "name": [
            "Division for Traffic Safety and Reliability, University of Wuppertal, Wuppertal, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tordeux", 
        "givenName": "Antoine", 
        "id": "sg:person.0711244634.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711244634.52"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2020-11-17", 
    "datePublishedReg": "2020-11-17", 
    "description": "VoronoiChraibi, MohcineSteffen, BernhardTordeux, Antoine diagrams are an established method in the analysis of pedestrian motion for constructing a density from two-dimensional positions. It is in turn used to give pointwise values for speed, movement direction, flow etc. The method was first described for high-density situations inside a crowd moving in a simple geometry without considering the influence of walls. However, more complicated distance calculations are needed for more complicated geometries where there are several obstacles or corners. In addition, partially empty spaces also require special treatment to avoid excessively big cells. These problems can lead to estimation errors when not handled correctly in subsequent use. In this work, we give details on how to adapt the calculations of Voronoi diagrams to make them fit for the presence of walls and obstacles in complex geometries. Furthermore, we show how that for persons at the edge of a group the personal space can be reasonably restricted. Based on these modifications, having pointwise values for quantities of interest allows to give average values for arbitrary geometries, not just for lines or rectangles of measurements. However, in order to obtain reasonable measurement values, different quantities may need different kind of averages\u2014arithmetic or harmonic, or weighted with density.", 
    "editor": [
      {
        "familyName": "Zuriguel", 
        "givenName": "Iker", 
        "type": "Person"
      }, 
      {
        "familyName": "Garcimartin", 
        "givenName": "Angel", 
        "type": "Person"
      }, 
      {
        "familyName": "Cruz", 
        "givenName": "Raul", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-55973-1_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-55972-4", 
        "978-3-030-55973-1"
      ], 
      "name": "Traffic and Granular Flow 2019", 
      "type": "Book"
    }, 
    "keywords": [
      "pointwise values", 
      "complex geometries", 
      "quantities of interest", 
      "Voronoi diagram", 
      "arbitrary geometry", 
      "complicated geometry", 
      "estimation error", 
      "simple geometry", 
      "presence of walls", 
      "pedestrian motion", 
      "influence of wall", 
      "geometry", 
      "bigger cells", 
      "two-dimensional position", 
      "diagram", 
      "space", 
      "special treatment", 
      "calculations", 
      "distance calculation", 
      "empty space", 
      "motion", 
      "measurement values", 
      "quantity", 
      "high density situations", 
      "problem", 
      "rectangle", 
      "different kinds", 
      "error", 
      "average value", 
      "density", 
      "different quantities", 
      "edge", 
      "values", 
      "speed", 
      "movement direction", 
      "direction", 
      "detail", 
      "corner", 
      "order", 
      "obstacles", 
      "analysis", 
      "kind", 
      "measurements", 
      "subsequent use", 
      "work", 
      "position", 
      "interest", 
      "situation", 
      "wall", 
      "lines", 
      "crowd", 
      "turn", 
      "influence", 
      "modification", 
      "use", 
      "presence", 
      "addition", 
      "group", 
      "cells", 
      "treatment", 
      "personal space", 
      "persons", 
      "method", 
      "VoronoiChraibi", 
      "MohcineSteffen", 
      "BernhardTordeux", 
      "Antoine diagrams", 
      "complicated distance calculations", 
      "rectangles of measurements", 
      "reasonable measurement values", 
      "Pedestrian Motion Using Voronoi Diagrams", 
      "Motion Using Voronoi Diagrams", 
      "Using Voronoi Diagrams"
    ], 
    "name": "Analysis of Pedestrian Motion Using Voronoi Diagrams in Complex Geometries", 
    "pagination": "39-44", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1132659332"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-55973-1_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-55973-1_5", 
      "https://app.dimensions.ai/details/publication/pub.1132659332"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_48.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-55973-1_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-55973-1_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-55973-1_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-55973-1_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-55973-1_5'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      23 PREDICATES      98 URIs      91 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-55973-1_5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nd0d0189d535f45a1af792ec759f7d7fd
4 schema:datePublished 2020-11-17
5 schema:datePublishedReg 2020-11-17
6 schema:description VoronoiChraibi, MohcineSteffen, BernhardTordeux, Antoine diagrams are an established method in the analysis of pedestrian motion for constructing a density from two-dimensional positions. It is in turn used to give pointwise values for speed, movement direction, flow etc. The method was first described for high-density situations inside a crowd moving in a simple geometry without considering the influence of walls. However, more complicated distance calculations are needed for more complicated geometries where there are several obstacles or corners. In addition, partially empty spaces also require special treatment to avoid excessively big cells. These problems can lead to estimation errors when not handled correctly in subsequent use. In this work, we give details on how to adapt the calculations of Voronoi diagrams to make them fit for the presence of walls and obstacles in complex geometries. Furthermore, we show how that for persons at the edge of a group the personal space can be reasonably restricted. Based on these modifications, having pointwise values for quantities of interest allows to give average values for arbitrary geometries, not just for lines or rectangles of measurements. However, in order to obtain reasonable measurement values, different quantities may need different kind of averages—arithmetic or harmonic, or weighted with density.
7 schema:editor N2a2253572f774d66bc5aac070b778bf1
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N4efe14b55ccc44ac8cfb1ae42f5a9eae
12 schema:keywords Antoine diagrams
13 BernhardTordeux
14 MohcineSteffen
15 Motion Using Voronoi Diagrams
16 Pedestrian Motion Using Voronoi Diagrams
17 Using Voronoi Diagrams
18 Voronoi diagram
19 VoronoiChraibi
20 addition
21 analysis
22 arbitrary geometry
23 average value
24 bigger cells
25 calculations
26 cells
27 complex geometries
28 complicated distance calculations
29 complicated geometry
30 corner
31 crowd
32 density
33 detail
34 diagram
35 different kinds
36 different quantities
37 direction
38 distance calculation
39 edge
40 empty space
41 error
42 estimation error
43 geometry
44 group
45 high density situations
46 influence
47 influence of wall
48 interest
49 kind
50 lines
51 measurement values
52 measurements
53 method
54 modification
55 motion
56 movement direction
57 obstacles
58 order
59 pedestrian motion
60 personal space
61 persons
62 pointwise values
63 position
64 presence
65 presence of walls
66 problem
67 quantities of interest
68 quantity
69 reasonable measurement values
70 rectangle
71 rectangles of measurements
72 simple geometry
73 situation
74 space
75 special treatment
76 speed
77 subsequent use
78 treatment
79 turn
80 two-dimensional position
81 use
82 values
83 wall
84 work
85 schema:name Analysis of Pedestrian Motion Using Voronoi Diagrams in Complex Geometries
86 schema:pagination 39-44
87 schema:productId N9f0777d73d33482ca4622026da9ea61c
88 Na9e25e960203421ba64672d71e55bb25
89 schema:publisher N22da7bdf44e34c4b91292271679cc565
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132659332
91 https://doi.org/10.1007/978-3-030-55973-1_5
92 schema:sdDatePublished 2022-01-01T19:26
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher Nd213d19360f34272a731513158b6c1d8
95 schema:url https://doi.org/10.1007/978-3-030-55973-1_5
96 sgo:license sg:explorer/license/
97 sgo:sdDataset chapters
98 rdf:type schema:Chapter
99 N118499a71c144208a52ec6720e093c17 schema:familyName Cruz
100 schema:givenName Raul
101 rdf:type schema:Person
102 N22290244463d4e729dc2f78ceedf05a2 schema:familyName Zuriguel
103 schema:givenName Iker
104 rdf:type schema:Person
105 N22da7bdf44e34c4b91292271679cc565 schema:name Springer Nature
106 rdf:type schema:Organisation
107 N2a2253572f774d66bc5aac070b778bf1 rdf:first N22290244463d4e729dc2f78ceedf05a2
108 rdf:rest Na36eda63841445a5874b4ad92bf203f6
109 N4efe14b55ccc44ac8cfb1ae42f5a9eae schema:isbn 978-3-030-55972-4
110 978-3-030-55973-1
111 schema:name Traffic and Granular Flow 2019
112 rdf:type schema:Book
113 N71b68c616f9a45f28e5694421814b9f8 rdf:first N118499a71c144208a52ec6720e093c17
114 rdf:rest rdf:nil
115 N9f0777d73d33482ca4622026da9ea61c schema:name doi
116 schema:value 10.1007/978-3-030-55973-1_5
117 rdf:type schema:PropertyValue
118 Na36eda63841445a5874b4ad92bf203f6 rdf:first Neabfa33a817c4419b5e12cdcd423cdd0
119 rdf:rest N71b68c616f9a45f28e5694421814b9f8
120 Na4582f766e6545f2b043cf85f1be9402 rdf:first sg:person.013270457265.00
121 rdf:rest Nc01e403e0e4d40f8bb77fe975a053c60
122 Na9e25e960203421ba64672d71e55bb25 schema:name dimensions_id
123 schema:value pub.1132659332
124 rdf:type schema:PropertyValue
125 Nc01e403e0e4d40f8bb77fe975a053c60 rdf:first sg:person.0711244634.52
126 rdf:rest rdf:nil
127 Nd0d0189d535f45a1af792ec759f7d7fd rdf:first sg:person.012724113050.28
128 rdf:rest Na4582f766e6545f2b043cf85f1be9402
129 Nd213d19360f34272a731513158b6c1d8 schema:name Springer Nature - SN SciGraph project
130 rdf:type schema:Organization
131 Neabfa33a817c4419b5e12cdcd423cdd0 schema:familyName Garcimartin
132 schema:givenName Angel
133 rdf:type schema:Person
134 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
135 schema:name Mathematical Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
138 schema:name Pure Mathematics
139 rdf:type schema:DefinedTerm
140 sg:person.012724113050.28 schema:affiliation grid-institutes:grid.8385.6
141 schema:familyName Chraibi
142 schema:givenName Mohcine
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012724113050.28
144 rdf:type schema:Person
145 sg:person.013270457265.00 schema:affiliation grid-institutes:grid.8385.6
146 schema:familyName Steffen
147 schema:givenName Bernhard
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270457265.00
149 rdf:type schema:Person
150 sg:person.0711244634.52 schema:affiliation grid-institutes:grid.7787.f
151 schema:familyName Tordeux
152 schema:givenName Antoine
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711244634.52
154 rdf:type schema:Person
155 grid-institutes:grid.7787.f schema:alternateName Division for Traffic Safety and Reliability, University of Wuppertal, Wuppertal, Germany
156 schema:name Division for Traffic Safety and Reliability, University of Wuppertal, Wuppertal, Germany
157 rdf:type schema:Organization
158 grid-institutes:grid.8385.6 schema:alternateName Civil Safety Research, Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, Jülich, Germany
159 schema:name Civil Safety Research, Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, Jülich, Germany
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...