Analysis of Pedestrian Motion Using Voronoi Diagrams in Complex Geometries View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2020-11-17

AUTHORS

Mohcine Chraibi , Bernhard Steffen , Antoine Tordeux

ABSTRACT

VoronoiChraibi, MohcineSteffen, BernhardTordeux, Antoine diagrams are an established method in the analysis of pedestrian motion for constructing a density from two-dimensional positions. It is in turn used to give pointwise values for speed, movement direction, flow etc. The method was first described for high-density situations inside a crowd moving in a simple geometry without considering the influence of walls. However, more complicated distance calculations are needed for more complicated geometries where there are several obstacles or corners. In addition, partially empty spaces also require special treatment to avoid excessively big cells. These problems can lead to estimation errors when not handled correctly in subsequent use. In this work, we give details on how to adapt the calculations of Voronoi diagrams to make them fit for the presence of walls and obstacles in complex geometries. Furthermore, we show how that for persons at the edge of a group the personal space can be reasonably restricted. Based on these modifications, having pointwise values for quantities of interest allows to give average values for arbitrary geometries, not just for lines or rectangles of measurements. However, in order to obtain reasonable measurement values, different quantities may need different kind of averages—arithmetic or harmonic, or weighted with density. More... »

PAGES

39-44

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-55973-1_5

DOI

http://dx.doi.org/10.1007/978-3-030-55973-1_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1132659332


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Civil Safety Research, Institute for Advanced Simulation, Forschungszentrum J\u00fclich GmbH, J\u00fclich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Civil Safety Research, Institute for Advanced Simulation, Forschungszentrum J\u00fclich GmbH, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chraibi", 
        "givenName": "Mohcine", 
        "id": "sg:person.012724113050.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012724113050.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Civil Safety Research, Institute for Advanced Simulation, Forschungszentrum J\u00fclich GmbH, J\u00fclich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Civil Safety Research, Institute for Advanced Simulation, Forschungszentrum J\u00fclich GmbH, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steffen", 
        "givenName": "Bernhard", 
        "id": "sg:person.013270457265.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270457265.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division for Traffic Safety and Reliability, University of Wuppertal, Wuppertal, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7787.f", 
          "name": [
            "Division for Traffic Safety and Reliability, University of Wuppertal, Wuppertal, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tordeux", 
        "givenName": "Antoine", 
        "id": "sg:person.0711244634.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711244634.52"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2020-11-17", 
    "datePublishedReg": "2020-11-17", 
    "description": "VoronoiChraibi, MohcineSteffen, BernhardTordeux, Antoine diagrams are an established method in the analysis of pedestrian motion for constructing a density from two-dimensional positions. It is in turn used to give pointwise values for speed, movement direction, flow etc. The method was first described for high-density situations inside a crowd moving in a simple geometry without considering the influence of walls. However, more complicated distance calculations are needed for more complicated geometries where there are several obstacles or corners. In addition, partially empty spaces also require special treatment to avoid excessively big cells. These problems can lead to estimation errors when not handled correctly in subsequent use. In this work, we give details on how to adapt the calculations of Voronoi diagrams to make them fit for the presence of walls and obstacles in complex geometries. Furthermore, we show how that for persons at the edge of a group the personal space can be reasonably restricted. Based on these modifications, having pointwise values for quantities of interest allows to give average values for arbitrary geometries, not just for lines or rectangles of measurements. However, in order to obtain reasonable measurement values, different quantities may need different kind of averages\u2014arithmetic or harmonic, or weighted with density.", 
    "editor": [
      {
        "familyName": "Zuriguel", 
        "givenName": "Iker", 
        "type": "Person"
      }, 
      {
        "familyName": "Garcimartin", 
        "givenName": "Angel", 
        "type": "Person"
      }, 
      {
        "familyName": "Cruz", 
        "givenName": "Raul", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-55973-1_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-55972-4", 
        "978-3-030-55973-1"
      ], 
      "name": "Traffic and Granular Flow 2019", 
      "type": "Book"
    }, 
    "keywords": [
      "pointwise values", 
      "complex geometries", 
      "quantities of interest", 
      "Voronoi diagram", 
      "arbitrary geometry", 
      "complicated geometry", 
      "estimation error", 
      "simple geometry", 
      "presence of walls", 
      "pedestrian motion", 
      "influence of wall", 
      "geometry", 
      "bigger cells", 
      "two-dimensional position", 
      "diagram", 
      "space", 
      "special treatment", 
      "calculations", 
      "distance calculation", 
      "empty space", 
      "motion", 
      "measurement values", 
      "quantity", 
      "high density situations", 
      "problem", 
      "rectangle", 
      "different kinds", 
      "error", 
      "average value", 
      "density", 
      "different quantities", 
      "edge", 
      "values", 
      "speed", 
      "movement direction", 
      "direction", 
      "detail", 
      "corner", 
      "order", 
      "obstacles", 
      "analysis", 
      "kind", 
      "measurements", 
      "subsequent use", 
      "work", 
      "position", 
      "interest", 
      "situation", 
      "wall", 
      "lines", 
      "crowd", 
      "turn", 
      "influence", 
      "modification", 
      "use", 
      "presence", 
      "addition", 
      "group", 
      "cells", 
      "treatment", 
      "personal space", 
      "persons", 
      "method"
    ], 
    "name": "Analysis of Pedestrian Motion Using Voronoi Diagrams in Complex Geometries", 
    "pagination": "39-44", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1132659332"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-55973-1_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-55973-1_5", 
      "https://app.dimensions.ai/details/publication/pub.1132659332"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_435.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-55973-1_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-55973-1_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-55973-1_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-55973-1_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-55973-1_5'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      23 PREDICATES      88 URIs      81 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-55973-1_5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ne5bba059e0e44802a79d354a8c35c60a
4 schema:datePublished 2020-11-17
5 schema:datePublishedReg 2020-11-17
6 schema:description VoronoiChraibi, MohcineSteffen, BernhardTordeux, Antoine diagrams are an established method in the analysis of pedestrian motion for constructing a density from two-dimensional positions. It is in turn used to give pointwise values for speed, movement direction, flow etc. The method was first described for high-density situations inside a crowd moving in a simple geometry without considering the influence of walls. However, more complicated distance calculations are needed for more complicated geometries where there are several obstacles or corners. In addition, partially empty spaces also require special treatment to avoid excessively big cells. These problems can lead to estimation errors when not handled correctly in subsequent use. In this work, we give details on how to adapt the calculations of Voronoi diagrams to make them fit for the presence of walls and obstacles in complex geometries. Furthermore, we show how that for persons at the edge of a group the personal space can be reasonably restricted. Based on these modifications, having pointwise values for quantities of interest allows to give average values for arbitrary geometries, not just for lines or rectangles of measurements. However, in order to obtain reasonable measurement values, different quantities may need different kind of averages—arithmetic or harmonic, or weighted with density.
7 schema:editor Na4c3413c93bc443ebb13cfc55c12da9b
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Na3cd7c4cc4b64ab297b577fce612a68c
12 schema:keywords Voronoi diagram
13 addition
14 analysis
15 arbitrary geometry
16 average value
17 bigger cells
18 calculations
19 cells
20 complex geometries
21 complicated geometry
22 corner
23 crowd
24 density
25 detail
26 diagram
27 different kinds
28 different quantities
29 direction
30 distance calculation
31 edge
32 empty space
33 error
34 estimation error
35 geometry
36 group
37 high density situations
38 influence
39 influence of wall
40 interest
41 kind
42 lines
43 measurement values
44 measurements
45 method
46 modification
47 motion
48 movement direction
49 obstacles
50 order
51 pedestrian motion
52 personal space
53 persons
54 pointwise values
55 position
56 presence
57 presence of walls
58 problem
59 quantities of interest
60 quantity
61 rectangle
62 simple geometry
63 situation
64 space
65 special treatment
66 speed
67 subsequent use
68 treatment
69 turn
70 two-dimensional position
71 use
72 values
73 wall
74 work
75 schema:name Analysis of Pedestrian Motion Using Voronoi Diagrams in Complex Geometries
76 schema:pagination 39-44
77 schema:productId Nb5430214095a4691875406f1ff64d001
78 Ne145475f0ffa45cf8b874b7548b90894
79 schema:publisher N0a79abf3d5914934ab5fbba857d3c1b7
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132659332
81 https://doi.org/10.1007/978-3-030-55973-1_5
82 schema:sdDatePublished 2022-05-20T07:48
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N76ee776f814b4a769730c0d8a9090d24
85 schema:url https://doi.org/10.1007/978-3-030-55973-1_5
86 sgo:license sg:explorer/license/
87 sgo:sdDataset chapters
88 rdf:type schema:Chapter
89 N0a79abf3d5914934ab5fbba857d3c1b7 schema:name Springer Nature
90 rdf:type schema:Organisation
91 N0c89dc160d424508b0be62d1179d760e rdf:first N150f93c6b7824bb7a41a47ff23211dc6
92 rdf:rest Ned5a4be6ec8e4e23b7e48897614ca097
93 N150f93c6b7824bb7a41a47ff23211dc6 schema:familyName Garcimartin
94 schema:givenName Angel
95 rdf:type schema:Person
96 N250c89a4179a41a5b40d619bd8d6e8b8 schema:familyName Zuriguel
97 schema:givenName Iker
98 rdf:type schema:Person
99 N76ee776f814b4a769730c0d8a9090d24 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N8da540866a5b45a0b4c941e66d10d8fa rdf:first sg:person.013270457265.00
102 rdf:rest Nfb740ea9fc25443bb486b594cd9f33c4
103 Na3cd7c4cc4b64ab297b577fce612a68c schema:isbn 978-3-030-55972-4
104 978-3-030-55973-1
105 schema:name Traffic and Granular Flow 2019
106 rdf:type schema:Book
107 Na4c3413c93bc443ebb13cfc55c12da9b rdf:first N250c89a4179a41a5b40d619bd8d6e8b8
108 rdf:rest N0c89dc160d424508b0be62d1179d760e
109 Nb5430214095a4691875406f1ff64d001 schema:name dimensions_id
110 schema:value pub.1132659332
111 rdf:type schema:PropertyValue
112 Nb8a6138c242541aa967914e40f0cdd21 schema:familyName Cruz
113 schema:givenName Raul
114 rdf:type schema:Person
115 Ne145475f0ffa45cf8b874b7548b90894 schema:name doi
116 schema:value 10.1007/978-3-030-55973-1_5
117 rdf:type schema:PropertyValue
118 Ne5bba059e0e44802a79d354a8c35c60a rdf:first sg:person.012724113050.28
119 rdf:rest N8da540866a5b45a0b4c941e66d10d8fa
120 Ned5a4be6ec8e4e23b7e48897614ca097 rdf:first Nb8a6138c242541aa967914e40f0cdd21
121 rdf:rest rdf:nil
122 Nfb740ea9fc25443bb486b594cd9f33c4 rdf:first sg:person.0711244634.52
123 rdf:rest rdf:nil
124 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
125 schema:name Mathematical Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
128 schema:name Pure Mathematics
129 rdf:type schema:DefinedTerm
130 sg:person.012724113050.28 schema:affiliation grid-institutes:grid.8385.6
131 schema:familyName Chraibi
132 schema:givenName Mohcine
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012724113050.28
134 rdf:type schema:Person
135 sg:person.013270457265.00 schema:affiliation grid-institutes:grid.8385.6
136 schema:familyName Steffen
137 schema:givenName Bernhard
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270457265.00
139 rdf:type schema:Person
140 sg:person.0711244634.52 schema:affiliation grid-institutes:grid.7787.f
141 schema:familyName Tordeux
142 schema:givenName Antoine
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711244634.52
144 rdf:type schema:Person
145 grid-institutes:grid.7787.f schema:alternateName Division for Traffic Safety and Reliability, University of Wuppertal, Wuppertal, Germany
146 schema:name Division for Traffic Safety and Reliability, University of Wuppertal, Wuppertal, Germany
147 rdf:type schema:Organization
148 grid-institutes:grid.8385.6 schema:alternateName Civil Safety Research, Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, Jülich, Germany
149 schema:name Civil Safety Research, Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, Jülich, Germany
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...