Representation of Initial Temperature as a Function in Simulated Annealing Approach for Metal Nanoparticle Structures Modeling View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2020-08-08

AUTHORS

Vladimir Myasnichenko , Stefka Fidanova , Rossen Mikhov , Leoneed Kirilov , Nickolay Sdobnyakov

ABSTRACT

Very important in the study of the thermodynamic characteristics of nanostructures (melting/crystallization) is the structure of nanoclusters. The properties of the nanoparticles can be predicted if we know the mechanism of the formation and the dynamic of changes in the internal structure. The problem to find the stable structure of nanoparticle is NP-hard and it needs development of special methods coming from Artificial Intelligence to be solved.In this paper we apply Simulated Annealing Method to find approximate solution. The proposed algorithm is designed for metal nanoparticle structures optimization. This problem has an exceptional importance in studying the properties of nanomaterials. The problem is represented as a global optimization problem. The most important algorithm parameter is the temperature. The main focus in this paper is on representation of the initial temperature as a function. Thus the algorithm parameters will be closely related with the input data.The experiments are performed with real data as follows. One set of mono metal clusters is chosen for investigation: Silver (Ag) where the size of clusters for Ag varies from Ag150 (atoms) to Ag3000 (atoms). Several dependencies are derived between the number and configuration of atoms in the cluster on one hand, and temperature representation and stopping rule on the other hand. More... »

PAGES

61-72

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-55347-0_6

DOI

http://dx.doi.org/10.1007/978-3-030-55347-0_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1129961499


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tver State University, Tver, Russia", 
          "id": "http://www.grid.ac/institutes/grid.438242.b", 
          "name": [
            "Tver State University, Tver, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Myasnichenko", 
        "givenName": "Vladimir", 
        "id": "sg:person.013562762060.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562762060.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424988.b", 
          "name": [
            "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "id": "sg:person.011173106320.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424988.b", 
          "name": [
            "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mikhov", 
        "givenName": "Rossen", 
        "id": "sg:person.014434131110.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014434131110.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424988.b", 
          "name": [
            "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirilov", 
        "givenName": "Leoneed", 
        "id": "sg:person.015700215743.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015700215743.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tver State University, Tver, Russia", 
          "id": "http://www.grid.ac/institutes/grid.438242.b", 
          "name": [
            "Tver State University, Tver, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sdobnyakov", 
        "givenName": "Nickolay", 
        "id": "sg:person.010244167706.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010244167706.80"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2020-08-08", 
    "datePublishedReg": "2020-08-08", 
    "description": "Very important in the study of the thermodynamic characteristics of nanostructures (melting/crystallization) is the structure of nanoclusters. The properties of the nanoparticles can be predicted if we know the mechanism of the formation and the dynamic of changes in the internal structure. The problem to find the stable structure of nanoparticle is NP-hard and it needs development of special methods coming from Artificial Intelligence to be solved.In this paper we apply Simulated Annealing Method to find approximate solution. The proposed algorithm is designed for metal nanoparticle structures optimization. This problem has an exceptional importance in studying the properties of nanomaterials. The problem is represented as a global optimization problem. The most important algorithm parameter is the temperature. The main focus in this paper is on representation of the initial temperature as a function. Thus the algorithm parameters will be closely related with the input data.The experiments are performed with real data as follows. One set of mono metal clusters is chosen for investigation: Silver (Ag) where the size of clusters for Ag varies from Ag150 (atoms) to Ag3000 (atoms). Several dependencies are derived between the number and configuration of atoms in the cluster on one hand, and temperature representation and stopping rule on the other hand.", 
    "editor": [
      {
        "familyName": "Dimov", 
        "givenName": "Ivan", 
        "type": "Person"
      }, 
      {
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-55347-0_6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-55346-3", 
        "978-3-030-55347-0"
      ], 
      "name": "Advances in High Performance Computing", 
      "type": "Book"
    }, 
    "keywords": [
      "properties of nanomaterials", 
      "global optimization problems", 
      "algorithm parameters", 
      "important algorithm parameters", 
      "configuration of atoms", 
      "metal nanoparticles", 
      "simulated annealing method", 
      "approximate solution", 
      "optimization problem", 
      "structure of nanoclusters", 
      "nanoparticles", 
      "simulated annealing approach", 
      "size of clusters", 
      "annealing method", 
      "temperature representation", 
      "annealing approach", 
      "real data", 
      "special methods", 
      "nanomaterials", 
      "input data", 
      "problem", 
      "nanostructures", 
      "representation", 
      "initial temperature", 
      "nanoclusters", 
      "silver", 
      "NPs", 
      "stable structure", 
      "structure modeling", 
      "parameters", 
      "Ag", 
      "metal clusters", 
      "internal structure", 
      "optimization", 
      "properties", 
      "main focus", 
      "clusters", 
      "algorithm", 
      "dynamics", 
      "structure", 
      "modeling", 
      "thermodynamic characteristics", 
      "temperature", 
      "solution", 
      "function", 
      "dynamics of changes", 
      "atoms", 
      "set", 
      "paper", 
      "size", 
      "method", 
      "configuration", 
      "approach", 
      "dependency", 
      "rules", 
      "number", 
      "artificial intelligence", 
      "data", 
      "characteristics", 
      "formation", 
      "experiments", 
      "development", 
      "hand", 
      "exceptional importance", 
      "mechanism", 
      "investigation", 
      "intelligence", 
      "importance", 
      "focus", 
      "study", 
      "changes"
    ], 
    "name": "Representation of Initial Temperature as a Function in Simulated Annealing Approach for Metal Nanoparticle Structures Modeling", 
    "pagination": "61-72", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1129961499"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-55347-0_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-55347-0_6", 
      "https://app.dimensions.ai/details/publication/pub.1129961499"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_411.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-55347-0_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-55347-0_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-55347-0_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-55347-0_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-55347-0_6'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      23 PREDICATES      96 URIs      89 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-55347-0_6 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N8a4f406d8b874f68ba20a8ddf3c34f62
4 schema:datePublished 2020-08-08
5 schema:datePublishedReg 2020-08-08
6 schema:description Very important in the study of the thermodynamic characteristics of nanostructures (melting/crystallization) is the structure of nanoclusters. The properties of the nanoparticles can be predicted if we know the mechanism of the formation and the dynamic of changes in the internal structure. The problem to find the stable structure of nanoparticle is NP-hard and it needs development of special methods coming from Artificial Intelligence to be solved.In this paper we apply Simulated Annealing Method to find approximate solution. The proposed algorithm is designed for metal nanoparticle structures optimization. This problem has an exceptional importance in studying the properties of nanomaterials. The problem is represented as a global optimization problem. The most important algorithm parameter is the temperature. The main focus in this paper is on representation of the initial temperature as a function. Thus the algorithm parameters will be closely related with the input data.The experiments are performed with real data as follows. One set of mono metal clusters is chosen for investigation: Silver (Ag) where the size of clusters for Ag varies from Ag150 (atoms) to Ag3000 (atoms). Several dependencies are derived between the number and configuration of atoms in the cluster on one hand, and temperature representation and stopping rule on the other hand.
7 schema:editor Ne75027eb22c04bdf8d78e7fd027710ee
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N10917c718695414bb5509cedc4aa4e18
12 schema:keywords Ag
13 NPs
14 algorithm
15 algorithm parameters
16 annealing approach
17 annealing method
18 approach
19 approximate solution
20 artificial intelligence
21 atoms
22 changes
23 characteristics
24 clusters
25 configuration
26 configuration of atoms
27 data
28 dependency
29 development
30 dynamics
31 dynamics of changes
32 exceptional importance
33 experiments
34 focus
35 formation
36 function
37 global optimization problems
38 hand
39 importance
40 important algorithm parameters
41 initial temperature
42 input data
43 intelligence
44 internal structure
45 investigation
46 main focus
47 mechanism
48 metal clusters
49 metal nanoparticles
50 method
51 modeling
52 nanoclusters
53 nanomaterials
54 nanoparticles
55 nanostructures
56 number
57 optimization
58 optimization problem
59 paper
60 parameters
61 problem
62 properties
63 properties of nanomaterials
64 real data
65 representation
66 rules
67 set
68 silver
69 simulated annealing approach
70 simulated annealing method
71 size
72 size of clusters
73 solution
74 special methods
75 stable structure
76 structure
77 structure modeling
78 structure of nanoclusters
79 study
80 temperature
81 temperature representation
82 thermodynamic characteristics
83 schema:name Representation of Initial Temperature as a Function in Simulated Annealing Approach for Metal Nanoparticle Structures Modeling
84 schema:pagination 61-72
85 schema:productId N0b3cf939ba9c499aa85ba0fbed74b61a
86 N17c7008e132b41eea669e6534695b531
87 schema:publisher Nc6578428c52946759f0d0aaaf93cf1e7
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129961499
89 https://doi.org/10.1007/978-3-030-55347-0_6
90 schema:sdDatePublished 2022-05-10T10:52
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N9f6d39816093417a8ed1eec4bae530a2
93 schema:url https://doi.org/10.1007/978-3-030-55347-0_6
94 sgo:license sg:explorer/license/
95 sgo:sdDataset chapters
96 rdf:type schema:Chapter
97 N0b3cf939ba9c499aa85ba0fbed74b61a schema:name dimensions_id
98 schema:value pub.1129961499
99 rdf:type schema:PropertyValue
100 N10917c718695414bb5509cedc4aa4e18 schema:isbn 978-3-030-55346-3
101 978-3-030-55347-0
102 schema:name Advances in High Performance Computing
103 rdf:type schema:Book
104 N17c7008e132b41eea669e6534695b531 schema:name doi
105 schema:value 10.1007/978-3-030-55347-0_6
106 rdf:type schema:PropertyValue
107 N18ccff8e76124c0f8feee5a8ecf68d0f schema:familyName Fidanova
108 schema:givenName Stefka
109 rdf:type schema:Person
110 N46bcbbab178e4d6282df311c03199cbe rdf:first N18ccff8e76124c0f8feee5a8ecf68d0f
111 rdf:rest rdf:nil
112 N6588e75b23a54e7c95637f407630bf8b rdf:first sg:person.015700215743.52
113 rdf:rest Nadbb21d3e2ae4a0b8ec610acde876d46
114 N7c43f688f85c464f8cafdead0cddb1b7 rdf:first sg:person.011173106320.18
115 rdf:rest Nf078f1b6a5e14131bc36527cb0e1320c
116 N8a4f406d8b874f68ba20a8ddf3c34f62 rdf:first sg:person.013562762060.25
117 rdf:rest N7c43f688f85c464f8cafdead0cddb1b7
118 N9f6d39816093417a8ed1eec4bae530a2 schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 Nadbb21d3e2ae4a0b8ec610acde876d46 rdf:first sg:person.010244167706.80
121 rdf:rest rdf:nil
122 Nc6578428c52946759f0d0aaaf93cf1e7 schema:name Springer Nature
123 rdf:type schema:Organisation
124 Nd27d49cb64d64951bb53fbbb7c2ac3ee schema:familyName Dimov
125 schema:givenName Ivan
126 rdf:type schema:Person
127 Ne75027eb22c04bdf8d78e7fd027710ee rdf:first Nd27d49cb64d64951bb53fbbb7c2ac3ee
128 rdf:rest N46bcbbab178e4d6282df311c03199cbe
129 Nf078f1b6a5e14131bc36527cb0e1320c rdf:first sg:person.014434131110.58
130 rdf:rest N6588e75b23a54e7c95637f407630bf8b
131 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
132 schema:name Chemical Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
135 schema:name Physical Chemistry (incl. Structural)
136 rdf:type schema:DefinedTerm
137 sg:person.010244167706.80 schema:affiliation grid-institutes:grid.438242.b
138 schema:familyName Sdobnyakov
139 schema:givenName Nickolay
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010244167706.80
141 rdf:type schema:Person
142 sg:person.011173106320.18 schema:affiliation grid-institutes:grid.424988.b
143 schema:familyName Fidanova
144 schema:givenName Stefka
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18
146 rdf:type schema:Person
147 sg:person.013562762060.25 schema:affiliation grid-institutes:grid.438242.b
148 schema:familyName Myasnichenko
149 schema:givenName Vladimir
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562762060.25
151 rdf:type schema:Person
152 sg:person.014434131110.58 schema:affiliation grid-institutes:grid.424988.b
153 schema:familyName Mikhov
154 schema:givenName Rossen
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014434131110.58
156 rdf:type schema:Person
157 sg:person.015700215743.52 schema:affiliation grid-institutes:grid.424988.b
158 schema:familyName Kirilov
159 schema:givenName Leoneed
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015700215743.52
161 rdf:type schema:Person
162 grid-institutes:grid.424988.b schema:alternateName Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria
163 schema:name Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria
164 rdf:type schema:Organization
165 grid-institutes:grid.438242.b schema:alternateName Tver State University, Tver, Russia
166 schema:name Tver State University, Tver, Russia
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...