Ontology type: schema:Chapter
2021-03-16
AUTHORSSakthivel Ambreetha , Kalyanasundaram Geetha Thanuja , Subburamu Karthikeyan , Dananjeyan Balachandar
ABSTRACTPaddy ecosystem naturally serves as a micro-habitat for diversified soil microbiome and its oxic-anoxic interface is the hub of multiple bio-geochemical cycles. However, in the Anthropocene era, paddy fields are not exempted from vigorous human interventions. On one hand the cropping of short duration high yielding varieties requiring high nutrient inputs and the other specifically, the heavy dosage of nitrogen inputs often extremely higher than the recommended dose. Furthermore, the inefficient agricultural practices lead to loss of applied N through volatilization, leaching, and low nitrogen use efficiency. In all the cases, imbalance in N level instantly alters the diversity of N-dependent bacterial and archaeal populations. Asia contributes to 90% of global rice production and many of its agricultural lands are constantly occupied with year-round paddy crops for decades. In such areas, prolonged imbalance in N might have a serious impact on soil microbiome subsequently collapsing the natural N transformations in the paddy ecosystem. The abundance of N transforming microbes such as nitrogen-fixing bacteria, ammonia-oxidizing bacteria/archaea, nitrite oxidizers, nitrate oxidizers, denitrifying bacteria, and anaerobic ammonia oxidizers are the key players in sustainable paddy cultivation. Planning a balanced N fertilization certainly helps in proper maintenance of soil health to ensure persistent crop production and sustainability. Hence, a detailed understanding of the adverse impact of higher and sub-optimal dosage of N fertilizers on paddy microbiome is critical. This chapter details the importance of microbial-mediated N transformations in paddy ecosystem followed by the impact of imbalanced N fertilization over soil microbial abundance and the soil health thereof. More... »
PAGES63-86
Soil and Recycling Management in the Anthropocene Era
ISBN
978-3-030-51885-1
978-3-030-51886-8
http://scigraph.springernature.com/pub.10.1007/978-3-030-51886-8_3
DOIhttp://dx.doi.org/10.1007/978-3-030-51886-8_3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1136418401
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Environmental Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Soil Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Microbiology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Agricultural Microbiology, AC&RI, Tamil Nadu Agricultural University, 641003, Coimbatore, India",
"id": "http://www.grid.ac/institutes/grid.412906.8",
"name": [
"Department of Agricultural Microbiology, AC&RI, Tamil Nadu Agricultural University, 641003, Coimbatore, India"
],
"type": "Organization"
},
"familyName": "Ambreetha",
"givenName": "Sakthivel",
"id": "sg:person.014662123674.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662123674.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Agricultural Microbiology, AC&RI, Tamil Nadu Agricultural University, 641003, Coimbatore, India",
"id": "http://www.grid.ac/institutes/grid.412906.8",
"name": [
"Department of Agricultural Microbiology, AC&RI, Tamil Nadu Agricultural University, 641003, Coimbatore, India"
],
"type": "Organization"
},
"familyName": "Thanuja",
"givenName": "Kalyanasundaram Geetha",
"id": "sg:person.07357453407.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07357453407.27"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Renewable Energy Engineering, AEC & RI, Tamil Nadu Agricultural University, 641003, Coimbatore, India",
"id": "http://www.grid.ac/institutes/grid.412906.8",
"name": [
"Department of Agricultural Microbiology, AC&RI, Tamil Nadu Agricultural University, 641003, Coimbatore, India",
"Department of Renewable Energy Engineering, AEC & RI, Tamil Nadu Agricultural University, 641003, Coimbatore, India"
],
"type": "Organization"
},
"familyName": "Karthikeyan",
"givenName": "Subburamu",
"id": "sg:person.07531221625.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07531221625.02"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Agricultural Microbiology, AC&RI, Tamil Nadu Agricultural University, 641003, Coimbatore, India",
"id": "http://www.grid.ac/institutes/grid.412906.8",
"name": [
"Department of Agricultural Microbiology, AC&RI, Tamil Nadu Agricultural University, 641003, Coimbatore, India"
],
"type": "Organization"
},
"familyName": "Balachandar",
"givenName": "Dananjeyan",
"id": "sg:person.0674514564.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674514564.36"
],
"type": "Person"
}
],
"datePublished": "2021-03-16",
"datePublishedReg": "2021-03-16",
"description": "Paddy ecosystem naturally serves as a micro-habitat for diversified soil microbiome and its oxic-anoxic interface is the hub of multiple bio-geochemical cycles. However, in the Anthropocene era, paddy fields are not exempted from vigorous human interventions. On one hand the cropping of short duration high yielding varieties requiring high nutrient inputs and the other specifically, the heavy dosage of nitrogen inputs often extremely higher than the recommended dose. Furthermore, the inefficient agricultural practices lead to loss of applied N through volatilization, leaching, and low nitrogen use efficiency. In all the cases, imbalance in N level instantly alters the diversity of N-dependent bacterial and archaeal populations. Asia contributes to 90% of global rice production and many of its agricultural lands are constantly occupied with year-round paddy crops for decades. In such areas, prolonged imbalance in N might have a serious impact on soil microbiome subsequently collapsing the natural N transformations in the paddy ecosystem. The abundance of N transforming microbes such as nitrogen-fixing bacteria, ammonia-oxidizing bacteria/archaea, nitrite oxidizers, nitrate oxidizers, denitrifying bacteria, and anaerobic ammonia oxidizers are the key players in sustainable paddy cultivation. Planning a balanced N fertilization certainly helps in proper maintenance of soil health to ensure persistent crop production and sustainability. Hence, a detailed understanding of the adverse impact of higher and sub-optimal dosage of N fertilizers on paddy microbiome is critical. This chapter details the importance of microbial-mediated N transformations in paddy ecosystem followed by the impact of imbalanced N fertilization over soil microbial abundance and the soil health thereof.",
"editor": [
{
"familyName": "Benckiser",
"givenName": "Gero",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-51886-8_3",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-51885-1",
"978-3-030-51886-8"
],
"name": "Soil and Recycling Management in the Anthropocene Era",
"type": "Book"
},
"keywords": [
"paddy ecosystem",
"soil health",
"N fertilization",
"soil microbiome",
"low nitrogen use efficiency",
"N transformations",
"nitrogen use efficiency",
"balanced N fertilization",
"inefficient agricultural practices",
"global rice production",
"nitrogen-fixing bacteria",
"high nutrient input",
"bio-geochemical cycles",
"soil microbial abundance",
"bacteria/archaea",
"anaerobic ammonia oxidizers",
"crop production",
"use efficiency",
"N fertilizer",
"rice production",
"paddy crop",
"agricultural practices",
"sub-optimal dosages",
"paddy cultivation",
"nitrogen input",
"agricultural land",
"paddy fields",
"nutrient inputs",
"paddy soil",
"archaeal populations",
"microbial abundance",
"ammonia oxidizers",
"heavy dosage",
"oxic-anoxic interface",
"fertilization",
"key players",
"ecosystems",
"nitrite oxidizers",
"microbiome",
"adverse impact",
"production",
"abundance",
"bacteria",
"cropping",
"crops",
"fertilizer",
"serious impact",
"detailed understanding",
"such areas",
"cultivation",
"soil",
"archaea",
"proper maintenance",
"land",
"prolonged imbalance",
"leaching",
"sustainability",
"microbes",
"volatilization",
"input",
"diversity",
"human intervention",
"impact",
"oxidizer",
"Bacterial",
"Anthropocene era",
"Asia",
"health",
"variety",
"alters",
"maintenance",
"population",
"practice",
"area",
"loss",
"efficiency",
"hub",
"imbalance",
"cycle",
"understanding",
"importance",
"short duration",
"decades",
"players",
"field",
"levels",
"transformation",
"chapter",
"changes",
"dosage",
"duration",
"hand",
"dose",
"era",
"interface",
"cases",
"intervention"
],
"name": "N Fertilization Dependent Bacterial and Archaeal Changes in Paddy Soil",
"pagination": "63-86",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1136418401"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-51886-8_3"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-51886-8_3",
"https://app.dimensions.ai/details/publication/pub.1136418401"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:53",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_441.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-51886-8_3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-51886-8_3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-51886-8_3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-51886-8_3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-51886-8_3'
This table displays all metadata directly associated to this object as RDF triples.
188 TRIPLES
23 PREDICATES
123 URIs
114 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-51886-8_3 | schema:about | anzsrc-for:05 |
2 | ″ | ″ | anzsrc-for:0503 |
3 | ″ | ″ | anzsrc-for:06 |
4 | ″ | ″ | anzsrc-for:0605 |
5 | ″ | schema:author | N971ad01054174f1aaff6bec60be9ef3a |
6 | ″ | schema:datePublished | 2021-03-16 |
7 | ″ | schema:datePublishedReg | 2021-03-16 |
8 | ″ | schema:description | Paddy ecosystem naturally serves as a micro-habitat for diversified soil microbiome and its oxic-anoxic interface is the hub of multiple bio-geochemical cycles. However, in the Anthropocene era, paddy fields are not exempted from vigorous human interventions. On one hand the cropping of short duration high yielding varieties requiring high nutrient inputs and the other specifically, the heavy dosage of nitrogen inputs often extremely higher than the recommended dose. Furthermore, the inefficient agricultural practices lead to loss of applied N through volatilization, leaching, and low nitrogen use efficiency. In all the cases, imbalance in N level instantly alters the diversity of N-dependent bacterial and archaeal populations. Asia contributes to 90% of global rice production and many of its agricultural lands are constantly occupied with year-round paddy crops for decades. In such areas, prolonged imbalance in N might have a serious impact on soil microbiome subsequently collapsing the natural N transformations in the paddy ecosystem. The abundance of N transforming microbes such as nitrogen-fixing bacteria, ammonia-oxidizing bacteria/archaea, nitrite oxidizers, nitrate oxidizers, denitrifying bacteria, and anaerobic ammonia oxidizers are the key players in sustainable paddy cultivation. Planning a balanced N fertilization certainly helps in proper maintenance of soil health to ensure persistent crop production and sustainability. Hence, a detailed understanding of the adverse impact of higher and sub-optimal dosage of N fertilizers on paddy microbiome is critical. This chapter details the importance of microbial-mediated N transformations in paddy ecosystem followed by the impact of imbalanced N fertilization over soil microbial abundance and the soil health thereof. |
9 | ″ | schema:editor | Nb132f7b011394841bdc4c2f2e1c76de9 |
10 | ″ | schema:genre | chapter |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N702f8231160d475d8522369454513f4f |
14 | ″ | schema:keywords | Anthropocene era |
15 | ″ | ″ | Asia |
16 | ″ | ″ | Bacterial |
17 | ″ | ″ | N fertilization |
18 | ″ | ″ | N fertilizer |
19 | ″ | ″ | N transformations |
20 | ″ | ″ | abundance |
21 | ″ | ″ | adverse impact |
22 | ″ | ″ | agricultural land |
23 | ″ | ″ | agricultural practices |
24 | ″ | ″ | alters |
25 | ″ | ″ | ammonia oxidizers |
26 | ″ | ″ | anaerobic ammonia oxidizers |
27 | ″ | ″ | archaea |
28 | ″ | ″ | archaeal populations |
29 | ″ | ″ | area |
30 | ″ | ″ | bacteria |
31 | ″ | ″ | bacteria/archaea |
32 | ″ | ″ | balanced N fertilization |
33 | ″ | ″ | bio-geochemical cycles |
34 | ″ | ″ | cases |
35 | ″ | ″ | changes |
36 | ″ | ″ | chapter |
37 | ″ | ″ | crop production |
38 | ″ | ″ | cropping |
39 | ″ | ″ | crops |
40 | ″ | ″ | cultivation |
41 | ″ | ″ | cycle |
42 | ″ | ″ | decades |
43 | ″ | ″ | detailed understanding |
44 | ″ | ″ | diversity |
45 | ″ | ″ | dosage |
46 | ″ | ″ | dose |
47 | ″ | ″ | duration |
48 | ″ | ″ | ecosystems |
49 | ″ | ″ | efficiency |
50 | ″ | ″ | era |
51 | ″ | ″ | fertilization |
52 | ″ | ″ | fertilizer |
53 | ″ | ″ | field |
54 | ″ | ″ | global rice production |
55 | ″ | ″ | hand |
56 | ″ | ″ | health |
57 | ″ | ″ | heavy dosage |
58 | ″ | ″ | high nutrient input |
59 | ″ | ″ | hub |
60 | ″ | ″ | human intervention |
61 | ″ | ″ | imbalance |
62 | ″ | ″ | impact |
63 | ″ | ″ | importance |
64 | ″ | ″ | inefficient agricultural practices |
65 | ″ | ″ | input |
66 | ″ | ″ | interface |
67 | ″ | ″ | intervention |
68 | ″ | ″ | key players |
69 | ″ | ″ | land |
70 | ″ | ″ | leaching |
71 | ″ | ″ | levels |
72 | ″ | ″ | loss |
73 | ″ | ″ | low nitrogen use efficiency |
74 | ″ | ″ | maintenance |
75 | ″ | ″ | microbes |
76 | ″ | ″ | microbial abundance |
77 | ″ | ″ | microbiome |
78 | ″ | ″ | nitrite oxidizers |
79 | ″ | ″ | nitrogen input |
80 | ″ | ″ | nitrogen use efficiency |
81 | ″ | ″ | nitrogen-fixing bacteria |
82 | ″ | ″ | nutrient inputs |
83 | ″ | ″ | oxic-anoxic interface |
84 | ″ | ″ | oxidizer |
85 | ″ | ″ | paddy crop |
86 | ″ | ″ | paddy cultivation |
87 | ″ | ″ | paddy ecosystem |
88 | ″ | ″ | paddy fields |
89 | ″ | ″ | paddy soil |
90 | ″ | ″ | players |
91 | ″ | ″ | population |
92 | ″ | ″ | practice |
93 | ″ | ″ | production |
94 | ″ | ″ | prolonged imbalance |
95 | ″ | ″ | proper maintenance |
96 | ″ | ″ | rice production |
97 | ″ | ″ | serious impact |
98 | ″ | ″ | short duration |
99 | ″ | ″ | soil |
100 | ″ | ″ | soil health |
101 | ″ | ″ | soil microbial abundance |
102 | ″ | ″ | soil microbiome |
103 | ″ | ″ | sub-optimal dosages |
104 | ″ | ″ | such areas |
105 | ″ | ″ | sustainability |
106 | ″ | ″ | transformation |
107 | ″ | ″ | understanding |
108 | ″ | ″ | use efficiency |
109 | ″ | ″ | variety |
110 | ″ | ″ | volatilization |
111 | ″ | schema:name | N Fertilization Dependent Bacterial and Archaeal Changes in Paddy Soil |
112 | ″ | schema:pagination | 63-86 |
113 | ″ | schema:productId | N9daaad20d6694a41be43d3d11197f2c3 |
114 | ″ | ″ | Nff59fd99a45a482a9254fdaf6cf84c4a |
115 | ″ | schema:publisher | N183be3fa55e34cd588360b7f97d5f5a7 |
116 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1136418401 |
117 | ″ | ″ | https://doi.org/10.1007/978-3-030-51886-8_3 |
118 | ″ | schema:sdDatePublished | 2022-05-10T10:53 |
119 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
120 | ″ | schema:sdPublisher | N1a9cffb40d634d6cbccb205a807a417c |
121 | ″ | schema:url | https://doi.org/10.1007/978-3-030-51886-8_3 |
122 | ″ | sgo:license | sg:explorer/license/ |
123 | ″ | sgo:sdDataset | chapters |
124 | ″ | rdf:type | schema:Chapter |
125 | N183be3fa55e34cd588360b7f97d5f5a7 | schema:name | Springer Nature |
126 | ″ | rdf:type | schema:Organisation |
127 | N1a9cffb40d634d6cbccb205a807a417c | schema:name | Springer Nature - SN SciGraph project |
128 | ″ | rdf:type | schema:Organization |
129 | N33eb09fe5c19460d9f59825604798437 | rdf:first | sg:person.0674514564.36 |
130 | ″ | rdf:rest | rdf:nil |
131 | N429f73ec5c0d45ba96f7b45e7ebea0e3 | rdf:first | sg:person.07357453407.27 |
132 | ″ | rdf:rest | N42caf53305214ee78ff0f54737e203fe |
133 | N42caf53305214ee78ff0f54737e203fe | rdf:first | sg:person.07531221625.02 |
134 | ″ | rdf:rest | N33eb09fe5c19460d9f59825604798437 |
135 | N702f8231160d475d8522369454513f4f | schema:isbn | 978-3-030-51885-1 |
136 | ″ | ″ | 978-3-030-51886-8 |
137 | ″ | schema:name | Soil and Recycling Management in the Anthropocene Era |
138 | ″ | rdf:type | schema:Book |
139 | N971ad01054174f1aaff6bec60be9ef3a | rdf:first | sg:person.014662123674.48 |
140 | ″ | rdf:rest | N429f73ec5c0d45ba96f7b45e7ebea0e3 |
141 | N9daaad20d6694a41be43d3d11197f2c3 | schema:name | doi |
142 | ″ | schema:value | 10.1007/978-3-030-51886-8_3 |
143 | ″ | rdf:type | schema:PropertyValue |
144 | Nb132f7b011394841bdc4c2f2e1c76de9 | rdf:first | Nc4a1a5dc9ec946bba066a0f0b0728b92 |
145 | ″ | rdf:rest | rdf:nil |
146 | Nc4a1a5dc9ec946bba066a0f0b0728b92 | schema:familyName | Benckiser |
147 | ″ | schema:givenName | Gero |
148 | ″ | rdf:type | schema:Person |
149 | Nff59fd99a45a482a9254fdaf6cf84c4a | schema:name | dimensions_id |
150 | ″ | schema:value | pub.1136418401 |
151 | ″ | rdf:type | schema:PropertyValue |
152 | anzsrc-for:05 | schema:inDefinedTermSet | anzsrc-for: |
153 | ″ | schema:name | Environmental Sciences |
154 | ″ | rdf:type | schema:DefinedTerm |
155 | anzsrc-for:0503 | schema:inDefinedTermSet | anzsrc-for: |
156 | ″ | schema:name | Soil Sciences |
157 | ″ | rdf:type | schema:DefinedTerm |
158 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
159 | ″ | schema:name | Biological Sciences |
160 | ″ | rdf:type | schema:DefinedTerm |
161 | anzsrc-for:0605 | schema:inDefinedTermSet | anzsrc-for: |
162 | ″ | schema:name | Microbiology |
163 | ″ | rdf:type | schema:DefinedTerm |
164 | sg:person.014662123674.48 | schema:affiliation | grid-institutes:grid.412906.8 |
165 | ″ | schema:familyName | Ambreetha |
166 | ″ | schema:givenName | Sakthivel |
167 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662123674.48 |
168 | ″ | rdf:type | schema:Person |
169 | sg:person.0674514564.36 | schema:affiliation | grid-institutes:grid.412906.8 |
170 | ″ | schema:familyName | Balachandar |
171 | ″ | schema:givenName | Dananjeyan |
172 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674514564.36 |
173 | ″ | rdf:type | schema:Person |
174 | sg:person.07357453407.27 | schema:affiliation | grid-institutes:grid.412906.8 |
175 | ″ | schema:familyName | Thanuja |
176 | ″ | schema:givenName | Kalyanasundaram Geetha |
177 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07357453407.27 |
178 | ″ | rdf:type | schema:Person |
179 | sg:person.07531221625.02 | schema:affiliation | grid-institutes:grid.412906.8 |
180 | ″ | schema:familyName | Karthikeyan |
181 | ″ | schema:givenName | Subburamu |
182 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07531221625.02 |
183 | ″ | rdf:type | schema:Person |
184 | grid-institutes:grid.412906.8 | schema:alternateName | Department of Agricultural Microbiology, AC&RI, Tamil Nadu Agricultural University, 641003, Coimbatore, India |
185 | ″ | ″ | Department of Renewable Energy Engineering, AEC & RI, Tamil Nadu Agricultural University, 641003, Coimbatore, India |
186 | ″ | schema:name | Department of Agricultural Microbiology, AC&RI, Tamil Nadu Agricultural University, 641003, Coimbatore, India |
187 | ″ | ″ | Department of Renewable Energy Engineering, AEC & RI, Tamil Nadu Agricultural University, 641003, Coimbatore, India |
188 | ″ | rdf:type | schema:Organization |