An Approach for Process Model Extraction by Multi-grained Text Classification View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2020-06-03

AUTHORS

Chen Qian , Lijie Wen , Akhil Kumar , Leilei Lin , Li Lin , Zan Zong , Shu’ang Li , Jianmin Wang

ABSTRACT

Process model extraction (PME) is a recently emerged interdiscipline between natural language processing (NLP) and business process management (BPM), which aims to extract process models from textual descriptions. Previous process extractors heavily depend on manual features and ignore the potential relations between clues of different text granularities. In this paper, we formalize the PME task into the multi-grained text classification problem, and propose a hierarchical neural network to effectively model and extract multi-grained information without manually-defined procedural features. Under this structure, we accordingly propose the coarse-to-fine (grained) learning mechanism, training multi-grained tasks in coarse-to-fine grained order to share the high-level knowledge for the low-level tasks. To evaluate our approach, we construct two multi-grained datasets from two different domains and conduct extensive experiments from different dimensions. The experimental results demonstrate that our approach outperforms the state-of-the-art methods with statistical significance and further investigations demonstrate its effectiveness. More... »

PAGES

268-282

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-49435-3_17

DOI

http://dx.doi.org/10.1007/978-3-030-49435-3_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1128157570


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, 100084 China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, 100084 China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qian", 
        "givenName": "Chen", 
        "id": "sg:person.010475111706.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010475111706.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, 100084 China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, 100084 China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wen", 
        "givenName": "Lijie", 
        "id": "sg:person.013640554311.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Smeal College of Business, Penn State University, State College, 16802 USA", 
          "id": "http://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Smeal College of Business, Penn State University, State College, 16802 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Akhil", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, 100084 China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, 100084 China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Leilei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, 100084 China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, 100084 China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, 100084 China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, 100084 China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zong", 
        "givenName": "Zan", 
        "id": "sg:person.011137150052.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011137150052.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, 100084 China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, 100084 China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Shu\u2019ang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, 100084 China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, 100084 China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jianmin", 
        "id": "sg:person.012303351315.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2020-06-03", 
    "datePublishedReg": "2020-06-03", 
    "description": "Process model extraction (PME) is a recently emerged interdiscipline between natural language processing (NLP) and business process management (BPM), which aims to extract process models from textual descriptions. Previous process extractors heavily depend on manual features and ignore the potential relations between clues of different text granularities. In this paper, we formalize the PME task into the multi-grained text classification problem, and propose a hierarchical neural network to effectively model and extract multi-grained information without manually-defined procedural features. Under this structure, we accordingly propose the coarse-to-fine (grained) learning mechanism, training multi-grained tasks in coarse-to-fine grained order to share the high-level knowledge for the low-level tasks. To evaluate our approach, we construct two multi-grained datasets from two different domains and conduct extensive experiments from different dimensions. The experimental results demonstrate that our approach outperforms the state-of-the-art methods with statistical significance and further investigations demonstrate its effectiveness.", 
    "editor": [
      {
        "familyName": "Dustdar", 
        "givenName": "Schahram", 
        "type": "Person"
      }, 
      {
        "familyName": "Yu", 
        "givenName": "Eric", 
        "type": "Person"
      }, 
      {
        "familyName": "Salinesi", 
        "givenName": "Camille", 
        "type": "Person"
      }, 
      {
        "familyName": "Rieu", 
        "givenName": "Dominique", 
        "type": "Person"
      }, 
      {
        "familyName": "Pant", 
        "givenName": "Vik", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-49435-3_17", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-030-49434-6", 
        "978-3-030-49435-3"
      ], 
      "name": "Advanced Information Systems Engineering", 
      "type": "Book"
    }, 
    "keywords": [
      "business process management", 
      "natural language processing", 
      "text classification problem", 
      "hierarchical neural network", 
      "model extraction", 
      "high-level knowledge", 
      "low-level tasks", 
      "manual features", 
      "text classification", 
      "textual descriptions", 
      "classification problem", 
      "Extensive experiments", 
      "process management", 
      "different text granularity", 
      "neural network", 
      "language processing", 
      "text granularity", 
      "art methods", 
      "learning mechanism", 
      "different domains", 
      "process model", 
      "task", 
      "experimental results", 
      "granularity", 
      "extractor", 
      "dataset", 
      "network", 
      "extraction", 
      "Multi", 
      "features", 
      "different dimensions", 
      "classification", 
      "processing", 
      "information", 
      "effectiveness", 
      "domain", 
      "procedural features", 
      "knowledge", 
      "interdiscipline", 
      "management", 
      "model", 
      "order", 
      "description", 
      "experiments", 
      "method", 
      "potential relation", 
      "fines", 
      "results", 
      "state", 
      "dimensions", 
      "structure", 
      "clues", 
      "mechanism", 
      "relation", 
      "significance", 
      "investigation", 
      "further investigation", 
      "statistical significance", 
      "approach", 
      "paper", 
      "problem", 
      "Process model extraction", 
      "Previous process extractors", 
      "process extractors", 
      "PME task", 
      "fine (grained) learning mechanism", 
      "multi-grained tasks", 
      "multi-grained datasets"
    ], 
    "name": "An Approach for Process Model Extraction by Multi-grained Text Classification", 
    "pagination": "268-282", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1128157570"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-49435-3_17"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-49435-3_17", 
      "https://app.dimensions.ai/details/publication/pub.1128157570"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_108.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-49435-3_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-49435-3_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-49435-3_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-49435-3_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-49435-3_17'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      23 PREDICATES      93 URIs      86 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-49435-3_17 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9dd0392b73b0497a88769ecbef7d2d42
4 schema:datePublished 2020-06-03
5 schema:datePublishedReg 2020-06-03
6 schema:description Process model extraction (PME) is a recently emerged interdiscipline between natural language processing (NLP) and business process management (BPM), which aims to extract process models from textual descriptions. Previous process extractors heavily depend on manual features and ignore the potential relations between clues of different text granularities. In this paper, we formalize the PME task into the multi-grained text classification problem, and propose a hierarchical neural network to effectively model and extract multi-grained information without manually-defined procedural features. Under this structure, we accordingly propose the coarse-to-fine (grained) learning mechanism, training multi-grained tasks in coarse-to-fine grained order to share the high-level knowledge for the low-level tasks. To evaluate our approach, we construct two multi-grained datasets from two different domains and conduct extensive experiments from different dimensions. The experimental results demonstrate that our approach outperforms the state-of-the-art methods with statistical significance and further investigations demonstrate its effectiveness.
7 schema:editor N386b877e98144806960abb4f8c85c1e0
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N27393f9773b346eaa61d24fd6337c538
12 schema:keywords Extensive experiments
13 Multi
14 PME task
15 Previous process extractors
16 Process model extraction
17 approach
18 art methods
19 business process management
20 classification
21 classification problem
22 clues
23 dataset
24 description
25 different dimensions
26 different domains
27 different text granularity
28 dimensions
29 domain
30 effectiveness
31 experimental results
32 experiments
33 extraction
34 extractor
35 features
36 fine (grained) learning mechanism
37 fines
38 further investigation
39 granularity
40 hierarchical neural network
41 high-level knowledge
42 information
43 interdiscipline
44 investigation
45 knowledge
46 language processing
47 learning mechanism
48 low-level tasks
49 management
50 manual features
51 mechanism
52 method
53 model
54 model extraction
55 multi-grained datasets
56 multi-grained tasks
57 natural language processing
58 network
59 neural network
60 order
61 paper
62 potential relation
63 problem
64 procedural features
65 process extractors
66 process management
67 process model
68 processing
69 relation
70 results
71 significance
72 state
73 statistical significance
74 structure
75 task
76 text classification
77 text classification problem
78 text granularity
79 textual descriptions
80 schema:name An Approach for Process Model Extraction by Multi-grained Text Classification
81 schema:pagination 268-282
82 schema:productId N0ae15b85bfb74480bb50321d4ae57369
83 Nb37871a14e144bd79fb024e6abf0a94d
84 schema:publisher Ne584dcce946440898dec88f70a82677e
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128157570
86 https://doi.org/10.1007/978-3-030-49435-3_17
87 schema:sdDatePublished 2022-01-01T19:06
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher N69499ffdfbd94c6e9b59606fdfdac465
90 schema:url https://doi.org/10.1007/978-3-030-49435-3_17
91 sgo:license sg:explorer/license/
92 sgo:sdDataset chapters
93 rdf:type schema:Chapter
94 N028f317ca61c466d95b965cfd8760390 rdf:first N833f4fc6f37a4cffaf40a1a3d15a6837
95 rdf:rest N3d0451399fe646b7aa6450d036f1b5a5
96 N04c77787a79a4eebb6a115d527b01088 rdf:first sg:person.012303351315.43
97 rdf:rest rdf:nil
98 N063f7e5d7eb64799b4a555dec8a58c3b schema:familyName Rieu
99 schema:givenName Dominique
100 rdf:type schema:Person
101 N092b4fd5fd5a4c4ab618c7ee1e9fbb43 rdf:first Nb6f72b56729945f6950bd4d3ec84cb05
102 rdf:rest rdf:nil
103 N0ae15b85bfb74480bb50321d4ae57369 schema:name dimensions_id
104 schema:value pub.1128157570
105 rdf:type schema:PropertyValue
106 N0c88ad65d32a41b29ed7c9f02a233380 schema:affiliation grid-institutes:grid.12527.33
107 schema:familyName Lin
108 schema:givenName Leilei
109 rdf:type schema:Person
110 N27393f9773b346eaa61d24fd6337c538 schema:isbn 978-3-030-49434-6
111 978-3-030-49435-3
112 schema:name Advanced Information Systems Engineering
113 rdf:type schema:Book
114 N28ea720733534b71a1694af4b2012767 rdf:first Ncdce62caf71a4177bbcfd586315c332b
115 rdf:rest N9dee933864614077ad9dd23cf294f8aa
116 N321eddf1136f43cda025fdafd085b540 rdf:first N58f62d91698d4c12abe7ff7c39a5fbf7
117 rdf:rest Na244bc29d8cc4fa0b6afd7ddb63b1c1e
118 N386b877e98144806960abb4f8c85c1e0 rdf:first N4328ca8d43f64af4863e251518e510b7
119 rdf:rest N321eddf1136f43cda025fdafd085b540
120 N3d0451399fe646b7aa6450d036f1b5a5 rdf:first N0c88ad65d32a41b29ed7c9f02a233380
121 rdf:rest N28ea720733534b71a1694af4b2012767
122 N4328ca8d43f64af4863e251518e510b7 schema:familyName Dustdar
123 schema:givenName Schahram
124 rdf:type schema:Person
125 N4ce5c6edaec54b6c98853fd95518083a rdf:first N7dc980c9510949b5a774dfa64396cd12
126 rdf:rest N04c77787a79a4eebb6a115d527b01088
127 N58f62d91698d4c12abe7ff7c39a5fbf7 schema:familyName Yu
128 schema:givenName Eric
129 rdf:type schema:Person
130 N69499ffdfbd94c6e9b59606fdfdac465 schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 N75fe3fa670ab49a6b53bc3c196c37cb0 rdf:first N063f7e5d7eb64799b4a555dec8a58c3b
133 rdf:rest N092b4fd5fd5a4c4ab618c7ee1e9fbb43
134 N7dc980c9510949b5a774dfa64396cd12 schema:affiliation grid-institutes:grid.12527.33
135 schema:familyName Li
136 schema:givenName Shu’ang
137 rdf:type schema:Person
138 N833f4fc6f37a4cffaf40a1a3d15a6837 schema:affiliation grid-institutes:grid.29857.31
139 schema:familyName Kumar
140 schema:givenName Akhil
141 rdf:type schema:Person
142 N912a994563e5448bbf0965e6865dab82 rdf:first sg:person.013640554311.55
143 rdf:rest N028f317ca61c466d95b965cfd8760390
144 N9dd0392b73b0497a88769ecbef7d2d42 rdf:first sg:person.010475111706.64
145 rdf:rest N912a994563e5448bbf0965e6865dab82
146 N9dee933864614077ad9dd23cf294f8aa rdf:first sg:person.011137150052.17
147 rdf:rest N4ce5c6edaec54b6c98853fd95518083a
148 Na244bc29d8cc4fa0b6afd7ddb63b1c1e rdf:first Na48e96c169d741c6ba6b29b363b297dc
149 rdf:rest N75fe3fa670ab49a6b53bc3c196c37cb0
150 Na48e96c169d741c6ba6b29b363b297dc schema:familyName Salinesi
151 schema:givenName Camille
152 rdf:type schema:Person
153 Nb37871a14e144bd79fb024e6abf0a94d schema:name doi
154 schema:value 10.1007/978-3-030-49435-3_17
155 rdf:type schema:PropertyValue
156 Nb6f72b56729945f6950bd4d3ec84cb05 schema:familyName Pant
157 schema:givenName Vik
158 rdf:type schema:Person
159 Ncdce62caf71a4177bbcfd586315c332b schema:affiliation grid-institutes:grid.12527.33
160 schema:familyName Lin
161 schema:givenName Li
162 rdf:type schema:Person
163 Ne584dcce946440898dec88f70a82677e schema:name Springer Nature
164 rdf:type schema:Organisation
165 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
166 schema:name Information and Computing Sciences
167 rdf:type schema:DefinedTerm
168 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
169 schema:name Artificial Intelligence and Image Processing
170 rdf:type schema:DefinedTerm
171 sg:person.010475111706.64 schema:affiliation grid-institutes:grid.12527.33
172 schema:familyName Qian
173 schema:givenName Chen
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010475111706.64
175 rdf:type schema:Person
176 sg:person.011137150052.17 schema:affiliation grid-institutes:grid.12527.33
177 schema:familyName Zong
178 schema:givenName Zan
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011137150052.17
180 rdf:type schema:Person
181 sg:person.012303351315.43 schema:affiliation grid-institutes:grid.12527.33
182 schema:familyName Wang
183 schema:givenName Jianmin
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43
185 rdf:type schema:Person
186 sg:person.013640554311.55 schema:affiliation grid-institutes:grid.12527.33
187 schema:familyName Wen
188 schema:givenName Lijie
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55
190 rdf:type schema:Person
191 grid-institutes:grid.12527.33 schema:alternateName School of Software, Tsinghua University, Beijing, 100084 China
192 schema:name School of Software, Tsinghua University, Beijing, 100084 China
193 rdf:type schema:Organization
194 grid-institutes:grid.29857.31 schema:alternateName Smeal College of Business, Penn State University, State College, 16802 USA
195 schema:name Smeal College of Business, Penn State University, State College, 16802 USA
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...