Migration and Human Capital: The Role of Education in Interregional Migration: The Australian Case View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2020-12-08

AUTHORS

Daniel Crown , Jonathan Corcoran , Alessandra Faggian

ABSTRACT

This chapter seeks to distinguish between possible explanations for why internal migrants receive wage premiums or penalties post-migration. We use data from the Household Income and Labour Dynamics in Australia (HILDA), and individual fixed effects models to control for unobservable sorting of migrants. We decompose the return to migration into components attributable to a worker’s education versus their occupation, controlling for unobservable individual characteristics. Overall, we find that both education and occupations contribute a relatively equal amount to a worker’s return to interregional migration. When differentiated by the geography of origin and destination locations, we find that access to high-paying occupations and a higher return to education explain roughly equal shares of the return to migration for migrants who move from one major city to another. However, access occupations are the primary determinant of the wage premium received by migrants who move to remote/very remote regions in Australia. More... »

PAGES

247-267

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-48291-6_11

DOI

http://dx.doi.org/10.1007/978-3-030-48291-6_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1133313296


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/16", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Studies in Human Society", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1603", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Demography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Ohio State University, Columbus, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.261331.4", 
          "name": [
            "The Ohio State University, Columbus, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crown", 
        "givenName": "Daniel", 
        "id": "sg:person.014505344632.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014505344632.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Queensland, Brisbane, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1003.2", 
          "name": [
            "The University of Queensland, Brisbane, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corcoran", 
        "givenName": "Jonathan", 
        "id": "sg:person.011427313033.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011427313033.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gran Sasso Science Institute, L\u2019Aquila, Italy", 
          "id": "http://www.grid.ac/institutes/grid.466750.6", 
          "name": [
            "Gran Sasso Science Institute, L\u2019Aquila, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Faggian", 
        "givenName": "Alessandra", 
        "id": "sg:person.010451017403.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010451017403.70"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2020-12-08", 
    "datePublishedReg": "2020-12-08", 
    "description": "This chapter seeks to distinguish between possible explanations for why internal migrants receive wage premiums or penalties post-migration. We use data from the Household Income and Labour Dynamics in Australia (HILDA), and individual fixed effects models to control for unobservable sorting of migrants. We decompose the return to migration into components attributable to a worker\u2019s education versus their occupation, controlling for unobservable individual characteristics. Overall, we find that both education and occupations contribute a relatively equal amount to a worker\u2019s return to interregional migration. When differentiated by the geography of origin and destination locations, we find that access to high-paying occupations and a higher return to education explain roughly equal shares of the return to migration for migrants who move from one major city to another. However, access occupations are the primary determinant of the wage premium received by migrants who move to remote/very remote regions in Australia.", 
    "editor": [
      {
        "familyName": "Kourtit", 
        "givenName": "Karima", 
        "type": "Person"
      }, 
      {
        "familyName": "Newbold", 
        "givenName": "Bruce", 
        "type": "Person"
      }, 
      {
        "familyName": "Nijkamp", 
        "givenName": "Peter", 
        "type": "Person"
      }, 
      {
        "familyName": "Partridge", 
        "givenName": "Mark", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-48291-6_11", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-48290-9", 
        "978-3-030-48291-6"
      ], 
      "name": "The Economic Geography of Cross-Border Migration", 
      "type": "Book"
    }, 
    "keywords": [
      "interregional migration", 
      "wage premium", 
      "role of education", 
      "unobservable individual characteristics", 
      "internal migrants", 
      "migrants", 
      "Labour Dynamics", 
      "higher returns", 
      "human capital", 
      "Australian case", 
      "household income", 
      "workers' return", 
      "major cities", 
      "return", 
      "worker education", 
      "premium", 
      "education", 
      "equal share", 
      "individual characteristics", 
      "occupation", 
      "effects model", 
      "Australia", 
      "remote regions", 
      "migration", 
      "geography", 
      "income", 
      "capital", 
      "share", 
      "primary determinant", 
      "city", 
      "destination location", 
      "determinants", 
      "possible explanation", 
      "chapter", 
      "access", 
      "explanation", 
      "penalty", 
      "model", 
      "dynamics", 
      "role", 
      "data", 
      "origin", 
      "region", 
      "cases", 
      "characteristics", 
      "location", 
      "sorting", 
      "amount", 
      "components", 
      "equal amounts"
    ], 
    "name": "Migration and Human Capital: The Role of Education in Interregional Migration: The Australian Case", 
    "pagination": "247-267", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1133313296"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-48291-6_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-48291-6_11", 
      "https://app.dimensions.ai/details/publication/pub.1133313296"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_325.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-48291-6_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-48291-6_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-48291-6_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-48291-6_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-48291-6_11'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      23 PREDICATES      76 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-48291-6_11 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 anzsrc-for:16
4 anzsrc-for:1603
5 schema:author N2c6e710dc3174cff95ed359b02c7d5a2
6 schema:datePublished 2020-12-08
7 schema:datePublishedReg 2020-12-08
8 schema:description This chapter seeks to distinguish between possible explanations for why internal migrants receive wage premiums or penalties post-migration. We use data from the Household Income and Labour Dynamics in Australia (HILDA), and individual fixed effects models to control for unobservable sorting of migrants. We decompose the return to migration into components attributable to a worker’s education versus their occupation, controlling for unobservable individual characteristics. Overall, we find that both education and occupations contribute a relatively equal amount to a worker’s return to interregional migration. When differentiated by the geography of origin and destination locations, we find that access to high-paying occupations and a higher return to education explain roughly equal shares of the return to migration for migrants who move from one major city to another. However, access occupations are the primary determinant of the wage premium received by migrants who move to remote/very remote regions in Australia.
9 schema:editor Nafcae0734126490282c28a1f3a456bd0
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N60f6ad194873401fb9bedb0388d824ba
14 schema:keywords Australia
15 Australian case
16 Labour Dynamics
17 access
18 amount
19 capital
20 cases
21 chapter
22 characteristics
23 city
24 components
25 data
26 destination location
27 determinants
28 dynamics
29 education
30 effects model
31 equal amounts
32 equal share
33 explanation
34 geography
35 higher returns
36 household income
37 human capital
38 income
39 individual characteristics
40 internal migrants
41 interregional migration
42 location
43 major cities
44 migrants
45 migration
46 model
47 occupation
48 origin
49 penalty
50 possible explanation
51 premium
52 primary determinant
53 region
54 remote regions
55 return
56 role
57 role of education
58 share
59 sorting
60 unobservable individual characteristics
61 wage premium
62 worker education
63 workers' return
64 schema:name Migration and Human Capital: The Role of Education in Interregional Migration: The Australian Case
65 schema:pagination 247-267
66 schema:productId N0f31ef1ae8624db6bc1e7cb4e7186558
67 Neb5651806e97441a8d02ccae8fcb129c
68 schema:publisher Ne0eb1e5df66b412480117b0227cec994
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1133313296
70 https://doi.org/10.1007/978-3-030-48291-6_11
71 schema:sdDatePublished 2022-05-20T07:46
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N199f9d8352264889be22c36f03080e60
74 schema:url https://doi.org/10.1007/978-3-030-48291-6_11
75 sgo:license sg:explorer/license/
76 sgo:sdDataset chapters
77 rdf:type schema:Chapter
78 N0f31ef1ae8624db6bc1e7cb4e7186558 schema:name doi
79 schema:value 10.1007/978-3-030-48291-6_11
80 rdf:type schema:PropertyValue
81 N199f9d8352264889be22c36f03080e60 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N25ce1f9bad6e440ca9bd69ddfdf5ea9c schema:familyName Partridge
84 schema:givenName Mark
85 rdf:type schema:Person
86 N2c6e710dc3174cff95ed359b02c7d5a2 rdf:first sg:person.014505344632.40
87 rdf:rest Nfab6b98998904688be18f0fda3eb72aa
88 N60f6ad194873401fb9bedb0388d824ba schema:isbn 978-3-030-48290-9
89 978-3-030-48291-6
90 schema:name The Economic Geography of Cross-Border Migration
91 rdf:type schema:Book
92 N61393b09eec741d18fb0490be3e0d670 schema:familyName Kourtit
93 schema:givenName Karima
94 rdf:type schema:Person
95 N7c4283f89d444e4882b64e1bc6d05bbf rdf:first sg:person.010451017403.70
96 rdf:rest rdf:nil
97 N85f2cd440d0c46e79d98aebf3a31cd1e schema:familyName Newbold
98 schema:givenName Bruce
99 rdf:type schema:Person
100 N9aeb345bd9104a4eb341e1ee59ce46ee rdf:first Naed861bcb64446c88f45ff8d6c58f435
101 rdf:rest Nc5a9e75c53a1467088230081a85687b7
102 Nac4b6d085654407990986ef05e07e97e rdf:first N85f2cd440d0c46e79d98aebf3a31cd1e
103 rdf:rest N9aeb345bd9104a4eb341e1ee59ce46ee
104 Naed861bcb64446c88f45ff8d6c58f435 schema:familyName Nijkamp
105 schema:givenName Peter
106 rdf:type schema:Person
107 Nafcae0734126490282c28a1f3a456bd0 rdf:first N61393b09eec741d18fb0490be3e0d670
108 rdf:rest Nac4b6d085654407990986ef05e07e97e
109 Nc5a9e75c53a1467088230081a85687b7 rdf:first N25ce1f9bad6e440ca9bd69ddfdf5ea9c
110 rdf:rest rdf:nil
111 Ne0eb1e5df66b412480117b0227cec994 schema:name Springer Nature
112 rdf:type schema:Organisation
113 Neb5651806e97441a8d02ccae8fcb129c schema:name dimensions_id
114 schema:value pub.1133313296
115 rdf:type schema:PropertyValue
116 Nfab6b98998904688be18f0fda3eb72aa rdf:first sg:person.011427313033.82
117 rdf:rest N7c4283f89d444e4882b64e1bc6d05bbf
118 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
119 schema:name Economics
120 rdf:type schema:DefinedTerm
121 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
122 schema:name Applied Economics
123 rdf:type schema:DefinedTerm
124 anzsrc-for:16 schema:inDefinedTermSet anzsrc-for:
125 schema:name Studies in Human Society
126 rdf:type schema:DefinedTerm
127 anzsrc-for:1603 schema:inDefinedTermSet anzsrc-for:
128 schema:name Demography
129 rdf:type schema:DefinedTerm
130 sg:person.010451017403.70 schema:affiliation grid-institutes:grid.466750.6
131 schema:familyName Faggian
132 schema:givenName Alessandra
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010451017403.70
134 rdf:type schema:Person
135 sg:person.011427313033.82 schema:affiliation grid-institutes:grid.1003.2
136 schema:familyName Corcoran
137 schema:givenName Jonathan
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011427313033.82
139 rdf:type schema:Person
140 sg:person.014505344632.40 schema:affiliation grid-institutes:grid.261331.4
141 schema:familyName Crown
142 schema:givenName Daniel
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014505344632.40
144 rdf:type schema:Person
145 grid-institutes:grid.1003.2 schema:alternateName The University of Queensland, Brisbane, Australia
146 schema:name The University of Queensland, Brisbane, Australia
147 rdf:type schema:Organization
148 grid-institutes:grid.261331.4 schema:alternateName The Ohio State University, Columbus, OH, USA
149 schema:name The Ohio State University, Columbus, OH, USA
150 rdf:type schema:Organization
151 grid-institutes:grid.466750.6 schema:alternateName Gran Sasso Science Institute, L’Aquila, Italy
152 schema:name Gran Sasso Science Institute, L’Aquila, Italy
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...