Ontology type: schema:Chapter
2020-02-13
AUTHORSStefka Fidanova , Olympia Roeva
ABSTRACTOne of the key objectives during wireless sensor networks deployment is full coverage of the monitoring region with a minimal number of sensors and minimized energy consumption of the network. In this paper we apply multi-objective Ant Colony Optimization (ACO) to solve this hard, from the computational point of view telecommunication problem. The number of ants is one of the key algorithm parameters in the ACO and it is important to find the optimal number of ants needed to achieve good solutions with minimal computational resources. The InterCriteria Analisys is applied in order to study the influence of ants number on the algorithm performance. More... »
PAGES501-509
Large-Scale Scientific Computing
ISBN
978-3-030-41031-5
978-3-030-41032-2
http://scigraph.springernature.com/pub.10.1007/978-3-030-41032-2_57
DOIhttp://dx.doi.org/10.1007/978-3-030-41032-2_57
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1124848595
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Technology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Communications Technologies",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.424988.b",
"name": [
"Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Fidanova",
"givenName": "Stefka",
"id": "sg:person.011173106320.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.493309.4",
"name": [
"Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Roeva",
"givenName": "Olympia",
"id": "sg:person.015745057111.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08"
],
"type": "Person"
}
],
"datePublished": "2020-02-13",
"datePublishedReg": "2020-02-13",
"description": "One of the key objectives during wireless sensor networks deployment is full coverage of the monitoring region with a minimal number of sensors and minimized energy consumption of the network. In this paper we apply multi-objective Ant Colony Optimization (ACO) to solve this hard, from the computational point of view telecommunication problem. The number of ants is one of the key algorithm parameters in the ACO and it is important to find the optimal number of ants needed to achieve good solutions with minimal computational resources. The InterCriteria Analisys is applied in order to study the influence of ants number on the algorithm performance.",
"editor": [
{
"familyName": "Lirkov",
"givenName": "Ivan",
"type": "Person"
},
{
"familyName": "Margenov",
"givenName": "Svetozar",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-41032-2_57",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-41031-5",
"978-3-030-41032-2"
],
"name": "Large-Scale Scientific Computing",
"type": "Book"
},
"keywords": [
"Ant Colony Optimization",
"multi-objective ant colony optimization",
"multi-objective ACO algorithm",
"minimal computational resources",
"computational point",
"telecommunication problem",
"sensor network deployment",
"ACO algorithm",
"colony optimization",
"key algorithm parameters",
"Wireless Sensor Network Deployment",
"computational resources",
"algorithm parameters",
"optimal number",
"minimal number",
"best solution",
"algorithm performance",
"network deployment",
"number of ants",
"monitoring region",
"optimization",
"algorithm",
"number",
"problem",
"solution",
"parameters",
"full coverage",
"network",
"point",
"order",
"key objective",
"performance",
"layout",
"energy consumption",
"sensors",
"analisys",
"objective",
"deployment",
"region",
"ant numbers",
"ants",
"coverage",
"influence",
"resources",
"consumption",
"paper"
],
"name": "Multi-objective ACO Algorithm for WSN Layout: InterCriteria Analisys",
"pagination": "501-509",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1124848595"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-41032-2_57"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-41032-2_57",
"https://app.dimensions.ai/details/publication/pub.1124848595"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:44",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_274.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-41032-2_57"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-41032-2_57'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-41032-2_57'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-41032-2_57'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-41032-2_57'
This table displays all metadata directly associated to this object as RDF triples.
133 TRIPLES
23 PREDICATES
74 URIs
64 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-41032-2_57 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | ″ | anzsrc-for:0103 |
4 | ″ | ″ | anzsrc-for:10 |
5 | ″ | ″ | anzsrc-for:1005 |
6 | ″ | schema:author | N5e399bb4f59448718007d4d184cdf9fd |
7 | ″ | schema:datePublished | 2020-02-13 |
8 | ″ | schema:datePublishedReg | 2020-02-13 |
9 | ″ | schema:description | One of the key objectives during wireless sensor networks deployment is full coverage of the monitoring region with a minimal number of sensors and minimized energy consumption of the network. In this paper we apply multi-objective Ant Colony Optimization (ACO) to solve this hard, from the computational point of view telecommunication problem. The number of ants is one of the key algorithm parameters in the ACO and it is important to find the optimal number of ants needed to achieve good solutions with minimal computational resources. The InterCriteria Analisys is applied in order to study the influence of ants number on the algorithm performance. |
10 | ″ | schema:editor | N0e1fb511f3fd4d529bcf1c5f31ba3497 |
11 | ″ | schema:genre | chapter |
12 | ″ | schema:inLanguage | en |
13 | ″ | schema:isAccessibleForFree | false |
14 | ″ | schema:isPartOf | N89d57d52ebad4308b4412ab4253b4ffe |
15 | ″ | schema:keywords | ACO algorithm |
16 | ″ | ″ | Ant Colony Optimization |
17 | ″ | ″ | Wireless Sensor Network Deployment |
18 | ″ | ″ | algorithm |
19 | ″ | ″ | algorithm parameters |
20 | ″ | ″ | algorithm performance |
21 | ″ | ″ | analisys |
22 | ″ | ″ | ant numbers |
23 | ″ | ″ | ants |
24 | ″ | ″ | best solution |
25 | ″ | ″ | colony optimization |
26 | ″ | ″ | computational point |
27 | ″ | ″ | computational resources |
28 | ″ | ″ | consumption |
29 | ″ | ″ | coverage |
30 | ″ | ″ | deployment |
31 | ″ | ″ | energy consumption |
32 | ″ | ″ | full coverage |
33 | ″ | ″ | influence |
34 | ″ | ″ | key algorithm parameters |
35 | ″ | ″ | key objective |
36 | ″ | ″ | layout |
37 | ″ | ″ | minimal computational resources |
38 | ″ | ″ | minimal number |
39 | ″ | ″ | monitoring region |
40 | ″ | ″ | multi-objective ACO algorithm |
41 | ″ | ″ | multi-objective ant colony optimization |
42 | ″ | ″ | network |
43 | ″ | ″ | network deployment |
44 | ″ | ″ | number |
45 | ″ | ″ | number of ants |
46 | ″ | ″ | objective |
47 | ″ | ″ | optimal number |
48 | ″ | ″ | optimization |
49 | ″ | ″ | order |
50 | ″ | ″ | paper |
51 | ″ | ″ | parameters |
52 | ″ | ″ | performance |
53 | ″ | ″ | point |
54 | ″ | ″ | problem |
55 | ″ | ″ | region |
56 | ″ | ″ | resources |
57 | ″ | ″ | sensor network deployment |
58 | ″ | ″ | sensors |
59 | ″ | ″ | solution |
60 | ″ | ″ | telecommunication problem |
61 | ″ | schema:name | Multi-objective ACO Algorithm for WSN Layout: InterCriteria Analisys |
62 | ″ | schema:pagination | 501-509 |
63 | ″ | schema:productId | N51a43d633b2e4af5b963add7c0e64732 |
64 | ″ | ″ | N6a082ba8c5b44949add0ca51bd71a7e8 |
65 | ″ | schema:publisher | N923ed754e27a4fd28369637b2f4fd499 |
66 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1124848595 |
67 | ″ | ″ | https://doi.org/10.1007/978-3-030-41032-2_57 |
68 | ″ | schema:sdDatePublished | 2022-05-20T07:44 |
69 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
70 | ″ | schema:sdPublisher | Na10914eebf87458fb1d66b392a3e03b4 |
71 | ″ | schema:url | https://doi.org/10.1007/978-3-030-41032-2_57 |
72 | ″ | sgo:license | sg:explorer/license/ |
73 | ″ | sgo:sdDataset | chapters |
74 | ″ | rdf:type | schema:Chapter |
75 | N0e1fb511f3fd4d529bcf1c5f31ba3497 | rdf:first | Nad44f23c8dda45c9a7237405753d3d88 |
76 | ″ | rdf:rest | N7d2a32e4364a4b6b80a311bb2d232e87 |
77 | N11732e8c76ca42e3a3614927b713aa49 | schema:familyName | Margenov |
78 | ″ | schema:givenName | Svetozar |
79 | ″ | rdf:type | schema:Person |
80 | N51a43d633b2e4af5b963add7c0e64732 | schema:name | doi |
81 | ″ | schema:value | 10.1007/978-3-030-41032-2_57 |
82 | ″ | rdf:type | schema:PropertyValue |
83 | N5e399bb4f59448718007d4d184cdf9fd | rdf:first | sg:person.011173106320.18 |
84 | ″ | rdf:rest | N7c5b743ec96b4f9889afe9d3f4647397 |
85 | N6a082ba8c5b44949add0ca51bd71a7e8 | schema:name | dimensions_id |
86 | ″ | schema:value | pub.1124848595 |
87 | ″ | rdf:type | schema:PropertyValue |
88 | N7c5b743ec96b4f9889afe9d3f4647397 | rdf:first | sg:person.015745057111.08 |
89 | ″ | rdf:rest | rdf:nil |
90 | N7d2a32e4364a4b6b80a311bb2d232e87 | rdf:first | N11732e8c76ca42e3a3614927b713aa49 |
91 | ″ | rdf:rest | rdf:nil |
92 | N89d57d52ebad4308b4412ab4253b4ffe | schema:isbn | 978-3-030-41031-5 |
93 | ″ | ″ | 978-3-030-41032-2 |
94 | ″ | schema:name | Large-Scale Scientific Computing |
95 | ″ | rdf:type | schema:Book |
96 | N923ed754e27a4fd28369637b2f4fd499 | schema:name | Springer Nature |
97 | ″ | rdf:type | schema:Organisation |
98 | Na10914eebf87458fb1d66b392a3e03b4 | schema:name | Springer Nature - SN SciGraph project |
99 | ″ | rdf:type | schema:Organization |
100 | Nad44f23c8dda45c9a7237405753d3d88 | schema:familyName | Lirkov |
101 | ″ | schema:givenName | Ivan |
102 | ″ | rdf:type | schema:Person |
103 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
104 | ″ | schema:name | Mathematical Sciences |
105 | ″ | rdf:type | schema:DefinedTerm |
106 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
107 | ″ | schema:name | Applied Mathematics |
108 | ″ | rdf:type | schema:DefinedTerm |
109 | anzsrc-for:0103 | schema:inDefinedTermSet | anzsrc-for: |
110 | ″ | schema:name | Numerical and Computational Mathematics |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | anzsrc-for:10 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Technology |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | anzsrc-for:1005 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Communications Technologies |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | sg:person.011173106320.18 | schema:affiliation | grid-institutes:grid.424988.b |
119 | ″ | schema:familyName | Fidanova |
120 | ″ | schema:givenName | Stefka |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.015745057111.08 | schema:affiliation | grid-institutes:grid.493309.4 |
124 | ″ | schema:familyName | Roeva |
125 | ″ | schema:givenName | Olympia |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08 |
127 | ″ | rdf:type | schema:Person |
128 | grid-institutes:grid.424988.b | schema:alternateName | Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria |
129 | ″ | schema:name | Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria |
130 | ″ | rdf:type | schema:Organization |
131 | grid-institutes:grid.493309.4 | schema:alternateName | Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria |
132 | ″ | schema:name | Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria |
133 | ″ | rdf:type | schema:Organization |