Ontology type: schema:Chapter
2020-05-10
AUTHORSFrancesco Sala , Alberto D’Amico
ABSTRACTBrainstem surgery is challenging due to the high concentration of essential neural structures such as cranial nerve nuclei, sensorimotor and auditory pathways, as well as the reticular formation. Therefore, even a small injury to the brainstem can hinder the functional integrity of one or more of these neural pathways and result in neurological deficits.Intraoperative neurophysiology aims not merely to predict but also to prevent neurological injury, thanks to the tailored intraoperative use of standard clinical neurophysiological techniques such as electromyography, and somatosensory, brainstem auditory and motor evoked potentials. Monitoring these potentials allows to prevent an injury to the long pathways within the brainstem. In addition, mapping techniques provide functional identification of critical anatomical landmarks, whenever their visual identification is ambiguous, to select the safest entry route to the brainstem.In this chapter we critically review the various intyraoperative mapping and monitoring techniques that can be used during surgery for lesions in the midbrain, pons, and medulla oblongata. More... »
PAGES109-130
Brainstem Tumors
ISBN
978-3-030-38773-0
978-3-030-38774-7
http://scigraph.springernature.com/pub.10.1007/978-3-030-38774-7_5
DOIhttp://dx.doi.org/10.1007/978-3-030-38774-7_5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1127471513
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Neurosciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy",
"id": "http://www.grid.ac/institutes/grid.411475.2",
"name": [
"Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy"
],
"type": "Organization"
},
"familyName": "Sala",
"givenName": "Francesco",
"id": "sg:person.01060645151.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060645151.72"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy",
"id": "http://www.grid.ac/institutes/grid.411475.2",
"name": [
"Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy"
],
"type": "Organization"
},
"familyName": "D\u2019Amico",
"givenName": "Alberto",
"id": "sg:person.012044245631.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012044245631.23"
],
"type": "Person"
}
],
"datePublished": "2020-05-10",
"datePublishedReg": "2020-05-10",
"description": "Brainstem surgery is challenging due to the high concentration of essential neural structures such as cranial nerve nuclei, sensorimotor and auditory pathways, as well as the reticular formation. Therefore, even a small injury to the brainstem can hinder the functional integrity of one or more of these neural pathways and result in neurological deficits.Intraoperative neurophysiology aims not merely to predict but also to prevent neurological injury, thanks to the tailored intraoperative use of standard clinical neurophysiological techniques such as electromyography, and somatosensory, brainstem auditory and motor evoked potentials. Monitoring these potentials allows to prevent an injury to the long pathways within the brainstem. In addition, mapping techniques provide functional identification of critical anatomical landmarks, whenever their visual identification is ambiguous, to select the safest entry route to the brainstem.In this chapter we critically review the various intyraoperative mapping and monitoring techniques that can be used during surgery for lesions in the midbrain, pons, and medulla oblongata.",
"editor": [
{
"familyName": "Jallo",
"givenName": "George I.",
"type": "Person"
},
{
"familyName": "Noureldine",
"givenName": "Mohammad Hassan A.",
"type": "Person"
},
{
"familyName": "Shimony",
"givenName": "Nir",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-38774-7_5",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-38773-0",
"978-3-030-38774-7"
],
"name": "Brainstem Tumors",
"type": "Book"
},
"keywords": [
"brainstem surgery",
"clinical neurophysiological techniques",
"cranial nerve nuclei",
"intraoperative neurophysiological monitoring",
"critical anatomical landmarks",
"neurological deficits",
"intraoperative neurophysiology",
"brainstem auditory",
"neurological injury",
"nerve nuclei",
"medulla oblongata",
"neurophysiological monitoring",
"reticular formation",
"auditory pathway",
"intraoperative use",
"neurophysiological techniques",
"essential neural structures",
"neural pathways",
"small injuries",
"brainstem",
"surgery",
"injury",
"anatomical landmarks",
"neural structures",
"functional integrity",
"entry route",
"pathway",
"somatosensory",
"oblongata",
"lesions",
"midbrain",
"electromyography",
"sensorimotor",
"pons",
"high concentrations",
"auditory",
"neurophysiology",
"deficits",
"long pathway",
"visual identification",
"functional identification",
"identification",
"nucleus",
"potential",
"landmarks",
"concentration",
"monitoring",
"use",
"monitoring techniques",
"technique",
"addition",
"integrity",
"mapping technique",
"motor",
"route",
"formation",
"chapter",
"mapping",
"structure",
"thanks"
],
"name": "Intraoperative Neurophysiological Monitoring During Brainstem Surgery",
"pagination": "109-130",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1127471513"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-38774-7_5"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-38774-7_5",
"https://app.dimensions.ai/details/publication/pub.1127471513"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:42",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_153.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-38774-7_5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-38774-7_5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-38774-7_5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-38774-7_5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-38774-7_5'
This table displays all metadata directly associated to this object as RDF triples.
137 TRIPLES
23 PREDICATES
84 URIs
77 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-38774-7_5 | schema:about | anzsrc-for:11 |
2 | ″ | ″ | anzsrc-for:1109 |
3 | ″ | schema:author | N002565210eac4b10ad0b50d37cb5418f |
4 | ″ | schema:datePublished | 2020-05-10 |
5 | ″ | schema:datePublishedReg | 2020-05-10 |
6 | ″ | schema:description | Brainstem surgery is challenging due to the high concentration of essential neural structures such as cranial nerve nuclei, sensorimotor and auditory pathways, as well as the reticular formation. Therefore, even a small injury to the brainstem can hinder the functional integrity of one or more of these neural pathways and result in neurological deficits.Intraoperative neurophysiology aims not merely to predict but also to prevent neurological injury, thanks to the tailored intraoperative use of standard clinical neurophysiological techniques such as electromyography, and somatosensory, brainstem auditory and motor evoked potentials. Monitoring these potentials allows to prevent an injury to the long pathways within the brainstem. In addition, mapping techniques provide functional identification of critical anatomical landmarks, whenever their visual identification is ambiguous, to select the safest entry route to the brainstem.In this chapter we critically review the various intyraoperative mapping and monitoring techniques that can be used during surgery for lesions in the midbrain, pons, and medulla oblongata. |
7 | ″ | schema:editor | N5e0ba251e955465581cad4933172b5c1 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N81fc5b890b614c6d80515ca3a5a3f8d1 |
12 | ″ | schema:keywords | addition |
13 | ″ | ″ | anatomical landmarks |
14 | ″ | ″ | auditory |
15 | ″ | ″ | auditory pathway |
16 | ″ | ″ | brainstem |
17 | ″ | ″ | brainstem auditory |
18 | ″ | ″ | brainstem surgery |
19 | ″ | ″ | chapter |
20 | ″ | ″ | clinical neurophysiological techniques |
21 | ″ | ″ | concentration |
22 | ″ | ″ | cranial nerve nuclei |
23 | ″ | ″ | critical anatomical landmarks |
24 | ″ | ″ | deficits |
25 | ″ | ″ | electromyography |
26 | ″ | ″ | entry route |
27 | ″ | ″ | essential neural structures |
28 | ″ | ″ | formation |
29 | ″ | ″ | functional identification |
30 | ″ | ″ | functional integrity |
31 | ″ | ″ | high concentrations |
32 | ″ | ″ | identification |
33 | ″ | ″ | injury |
34 | ″ | ″ | integrity |
35 | ″ | ″ | intraoperative neurophysiological monitoring |
36 | ″ | ″ | intraoperative neurophysiology |
37 | ″ | ″ | intraoperative use |
38 | ″ | ″ | landmarks |
39 | ″ | ″ | lesions |
40 | ″ | ″ | long pathway |
41 | ″ | ″ | mapping |
42 | ″ | ″ | mapping technique |
43 | ″ | ″ | medulla oblongata |
44 | ″ | ″ | midbrain |
45 | ″ | ″ | monitoring |
46 | ″ | ″ | monitoring techniques |
47 | ″ | ″ | motor |
48 | ″ | ″ | nerve nuclei |
49 | ″ | ″ | neural pathways |
50 | ″ | ″ | neural structures |
51 | ″ | ″ | neurological deficits |
52 | ″ | ″ | neurological injury |
53 | ″ | ″ | neurophysiological monitoring |
54 | ″ | ″ | neurophysiological techniques |
55 | ″ | ″ | neurophysiology |
56 | ″ | ″ | nucleus |
57 | ″ | ″ | oblongata |
58 | ″ | ″ | pathway |
59 | ″ | ″ | pons |
60 | ″ | ″ | potential |
61 | ″ | ″ | reticular formation |
62 | ″ | ″ | route |
63 | ″ | ″ | sensorimotor |
64 | ″ | ″ | small injuries |
65 | ″ | ″ | somatosensory |
66 | ″ | ″ | structure |
67 | ″ | ″ | surgery |
68 | ″ | ″ | technique |
69 | ″ | ″ | thanks |
70 | ″ | ″ | use |
71 | ″ | ″ | visual identification |
72 | ″ | schema:name | Intraoperative Neurophysiological Monitoring During Brainstem Surgery |
73 | ″ | schema:pagination | 109-130 |
74 | ″ | schema:productId | N7387c323d1a94bb29ef7446746053d9b |
75 | ″ | ″ | Nc9bdd0c46b6345f9ae3336def58422a8 |
76 | ″ | schema:publisher | Nc7640d26e85441d28497fb16f0a023fb |
77 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1127471513 |
78 | ″ | ″ | https://doi.org/10.1007/978-3-030-38774-7_5 |
79 | ″ | schema:sdDatePublished | 2022-05-20T07:42 |
80 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
81 | ″ | schema:sdPublisher | N284e4bba05354d2d935334f3ff04f70d |
82 | ″ | schema:url | https://doi.org/10.1007/978-3-030-38774-7_5 |
83 | ″ | sgo:license | sg:explorer/license/ |
84 | ″ | sgo:sdDataset | chapters |
85 | ″ | rdf:type | schema:Chapter |
86 | N002565210eac4b10ad0b50d37cb5418f | rdf:first | sg:person.01060645151.72 |
87 | ″ | rdf:rest | N2b3bf0bd5abe4051a57128120cd47661 |
88 | N1cb4d0c7030f4fd6a24bb5c4bd8df460 | schema:familyName | Shimony |
89 | ″ | schema:givenName | Nir |
90 | ″ | rdf:type | schema:Person |
91 | N284e4bba05354d2d935334f3ff04f70d | schema:name | Springer Nature - SN SciGraph project |
92 | ″ | rdf:type | schema:Organization |
93 | N2b3bf0bd5abe4051a57128120cd47661 | rdf:first | sg:person.012044245631.23 |
94 | ″ | rdf:rest | rdf:nil |
95 | N5c9f89e73e684aa7bfff4fad7e3a8fd0 | schema:familyName | Noureldine |
96 | ″ | schema:givenName | Mohammad Hassan A. |
97 | ″ | rdf:type | schema:Person |
98 | N5e0ba251e955465581cad4933172b5c1 | rdf:first | Nebe8d56aacaf43d7a480dd022cab638e |
99 | ″ | rdf:rest | N7ef9c8b8b4f54d25be30b251ca340d16 |
100 | N7387c323d1a94bb29ef7446746053d9b | schema:name | doi |
101 | ″ | schema:value | 10.1007/978-3-030-38774-7_5 |
102 | ″ | rdf:type | schema:PropertyValue |
103 | N77b5804ef4af43ea8317287e47a4f5fd | rdf:first | N1cb4d0c7030f4fd6a24bb5c4bd8df460 |
104 | ″ | rdf:rest | rdf:nil |
105 | N7ef9c8b8b4f54d25be30b251ca340d16 | rdf:first | N5c9f89e73e684aa7bfff4fad7e3a8fd0 |
106 | ″ | rdf:rest | N77b5804ef4af43ea8317287e47a4f5fd |
107 | N81fc5b890b614c6d80515ca3a5a3f8d1 | schema:isbn | 978-3-030-38773-0 |
108 | ″ | ″ | 978-3-030-38774-7 |
109 | ″ | schema:name | Brainstem Tumors |
110 | ″ | rdf:type | schema:Book |
111 | Nc7640d26e85441d28497fb16f0a023fb | schema:name | Springer Nature |
112 | ″ | rdf:type | schema:Organisation |
113 | Nc9bdd0c46b6345f9ae3336def58422a8 | schema:name | dimensions_id |
114 | ″ | schema:value | pub.1127471513 |
115 | ″ | rdf:type | schema:PropertyValue |
116 | Nebe8d56aacaf43d7a480dd022cab638e | schema:familyName | Jallo |
117 | ″ | schema:givenName | George I. |
118 | ″ | rdf:type | schema:Person |
119 | anzsrc-for:11 | schema:inDefinedTermSet | anzsrc-for: |
120 | ″ | schema:name | Medical and Health Sciences |
121 | ″ | rdf:type | schema:DefinedTerm |
122 | anzsrc-for:1109 | schema:inDefinedTermSet | anzsrc-for: |
123 | ″ | schema:name | Neurosciences |
124 | ″ | rdf:type | schema:DefinedTerm |
125 | sg:person.01060645151.72 | schema:affiliation | grid-institutes:grid.411475.2 |
126 | ″ | schema:familyName | Sala |
127 | ″ | schema:givenName | Francesco |
128 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060645151.72 |
129 | ″ | rdf:type | schema:Person |
130 | sg:person.012044245631.23 | schema:affiliation | grid-institutes:grid.411475.2 |
131 | ″ | schema:familyName | D’Amico |
132 | ″ | schema:givenName | Alberto |
133 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012044245631.23 |
134 | ″ | rdf:type | schema:Person |
135 | grid-institutes:grid.411475.2 | schema:alternateName | Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy |
136 | ″ | schema:name | Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy |
137 | ″ | rdf:type | schema:Organization |