Ontology type: schema:Chapter
2020-01-22
AUTHORSVincenco Cutello , Maria Oliva , Mario Pavone , Rocco A. Scollo
ABSTRACTIn this paper we present a hybrid immunological inspired algorithm (Hybrid-IA) for solving the Minimum Weighted Feedback Vertex Set (MWFVS) problem. MWFVS is one of the most interesting and challenging combinatorial optimization problem, which finds application in many fields and in many real life tasks. The proposed algorithm is inspired by the clonal selection principle, and therefore it takes advantage of the main strength characteristics of the operators of (i) cloning; (ii) hypermutation; and (iii) aging. Along with these operators, the algorithm uses a local search procedure, based on a deterministic approach, whose purpose is to refine the solutions found so far. In order to evaluate the efficiency and robustness of Hybrid-IA several experiments were performed on different instances, and for each instance it was compared to three different algorithms: (1) a memetic algorithm based on a genetic algorithm (MA); (2) a tabu search metaheuristic (XTS); and (3) an iterative tabu search (ITS). The obtained results prove the efficiency and reliability of hybrid-IA on all instances in term of the best solutions found and also similar performances with all compared algorithms, which represent nowadays the state-of-the-art on for MWFVS problem. More... »
PAGES1-16
Learning and Intelligent Optimization
ISBN
978-3-030-38628-3
978-3-030-38629-0
http://scigraph.springernature.com/pub.10.1007/978-3-030-38629-0_1
DOIhttp://dx.doi.org/10.1007/978-3-030-38629-0_1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1124216802
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy",
"id": "http://www.grid.ac/institutes/grid.8158.4",
"name": [
"Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy"
],
"type": "Organization"
},
"familyName": "Cutello",
"givenName": "Vincenco",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy",
"id": "http://www.grid.ac/institutes/grid.8158.4",
"name": [
"Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy"
],
"type": "Organization"
},
"familyName": "Oliva",
"givenName": "Maria",
"id": "sg:person.012340437717.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012340437717.50"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy",
"id": "http://www.grid.ac/institutes/grid.8158.4",
"name": [
"Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy"
],
"type": "Organization"
},
"familyName": "Pavone",
"givenName": "Mario",
"id": "sg:person.07350620665.82",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350620665.82"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy",
"id": "http://www.grid.ac/institutes/grid.8158.4",
"name": [
"Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy"
],
"type": "Organization"
},
"familyName": "Scollo",
"givenName": "Rocco A.",
"id": "sg:person.016661443761.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661443761.18"
],
"type": "Person"
}
],
"datePublished": "2020-01-22",
"datePublishedReg": "2020-01-22",
"description": "In this paper we present a hybrid immunological inspired algorithm (Hybrid-IA) for solving the Minimum Weighted Feedback Vertex Set (MWFVS) problem. MWFVS is one of the most interesting and challenging combinatorial optimization problem, which finds application in many fields and in many real life tasks. The proposed algorithm is inspired by the clonal selection principle, and therefore it takes advantage of the main strength characteristics of the operators of (i) cloning; (ii) hypermutation; and (iii) aging. Along with these operators, the algorithm uses a local search procedure, based on a deterministic approach, whose purpose is to refine the solutions found so far. In order to evaluate the efficiency and robustness of Hybrid-IA several experiments were performed on different instances, and for each instance it was compared to three different algorithms: (1) a memetic algorithm based on a genetic algorithm (MA); (2) a tabu search metaheuristic (XTS); and (3) an iterative tabu search (ITS). The obtained results prove the efficiency and reliability of hybrid-IA on all instances in term of the best solutions found and also similar performances with all compared algorithms, which represent nowadays the state-of-the-art on for MWFVS problem.",
"editor": [
{
"familyName": "Matsatsinis",
"givenName": "Nikolaos F.",
"type": "Person"
},
{
"familyName": "Marinakis",
"givenName": "Yannis",
"type": "Person"
},
{
"familyName": "Pardalos",
"givenName": "Panos",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-38629-0_1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-38628-3",
"978-3-030-38629-0"
],
"name": "Learning and Intelligent Optimization",
"type": "Book"
},
"keywords": [
"challenging combinatorial optimization problems",
"Weighted Feedback Vertex Set Problem",
"tabu search metaheuristic",
"combinatorial optimization problems",
"local search procedure",
"clonal selection principle",
"real-life tasks",
"Feedback Vertex Set problem",
"search metaheuristic",
"tabu search",
"memetic algorithm",
"different algorithms",
"set problem",
"search procedure",
"different instances",
"genetic algorithm",
"best solution",
"algorithm",
"optimization problem",
"feedback vertex",
"hybrid IA",
"similar performance",
"immunological searches",
"instances",
"life tasks",
"selection principle",
"deterministic approach",
"metaheuristics",
"main strength characteristics",
"search",
"operators",
"task",
"robustness",
"efficiency",
"solution",
"art",
"applications",
"performance",
"reliability",
"vertices",
"advantages",
"order",
"experiments",
"principles",
"terms",
"field",
"purpose",
"state",
"results",
"characteristics",
"procedure",
"problem",
"approach",
"hypermutation",
"strength characteristics",
"aging",
"cloning",
"paper"
],
"name": "A Hybrid Immunological Search for the Weighted Feedback Vertex Set Problem",
"pagination": "1-16",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1124216802"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-38629-0_1"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-38629-0_1",
"https://app.dimensions.ai/details/publication/pub.1124216802"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:47",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_375.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-38629-0_1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-38629-0_1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-38629-0_1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-38629-0_1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-38629-0_1'
This table displays all metadata directly associated to this object as RDF triples.
148 TRIPLES
23 PREDICATES
83 URIs
76 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-38629-0_1 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | Ne380a8f6a66b4ce290788d809a251221 |
4 | ″ | schema:datePublished | 2020-01-22 |
5 | ″ | schema:datePublishedReg | 2020-01-22 |
6 | ″ | schema:description | In this paper we present a hybrid immunological inspired algorithm (Hybrid-IA) for solving the Minimum Weighted Feedback Vertex Set (MWFVS) problem. MWFVS is one of the most interesting and challenging combinatorial optimization problem, which finds application in many fields and in many real life tasks. The proposed algorithm is inspired by the clonal selection principle, and therefore it takes advantage of the main strength characteristics of the operators of (i) cloning; (ii) hypermutation; and (iii) aging. Along with these operators, the algorithm uses a local search procedure, based on a deterministic approach, whose purpose is to refine the solutions found so far. In order to evaluate the efficiency and robustness of Hybrid-IA several experiments were performed on different instances, and for each instance it was compared to three different algorithms: (1) a memetic algorithm based on a genetic algorithm (MA); (2) a tabu search metaheuristic (XTS); and (3) an iterative tabu search (ITS). The obtained results prove the efficiency and reliability of hybrid-IA on all instances in term of the best solutions found and also similar performances with all compared algorithms, which represent nowadays the state-of-the-art on for MWFVS problem. |
7 | ″ | schema:editor | N2d51c2ff9269451c93e87f2f209727c4 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N3b971bb4a79e42cdb1e0f3bc78da6c44 |
12 | ″ | schema:keywords | Feedback Vertex Set problem |
13 | ″ | ″ | Weighted Feedback Vertex Set Problem |
14 | ″ | ″ | advantages |
15 | ″ | ″ | aging |
16 | ″ | ″ | algorithm |
17 | ″ | ″ | applications |
18 | ″ | ″ | approach |
19 | ″ | ″ | art |
20 | ″ | ″ | best solution |
21 | ″ | ″ | challenging combinatorial optimization problems |
22 | ″ | ″ | characteristics |
23 | ″ | ″ | clonal selection principle |
24 | ″ | ″ | cloning |
25 | ″ | ″ | combinatorial optimization problems |
26 | ″ | ″ | deterministic approach |
27 | ″ | ″ | different algorithms |
28 | ″ | ″ | different instances |
29 | ″ | ″ | efficiency |
30 | ″ | ″ | experiments |
31 | ″ | ″ | feedback vertex |
32 | ″ | ″ | field |
33 | ″ | ″ | genetic algorithm |
34 | ″ | ″ | hybrid IA |
35 | ″ | ″ | hypermutation |
36 | ″ | ″ | immunological searches |
37 | ″ | ″ | instances |
38 | ″ | ″ | life tasks |
39 | ″ | ″ | local search procedure |
40 | ″ | ″ | main strength characteristics |
41 | ″ | ″ | memetic algorithm |
42 | ″ | ″ | metaheuristics |
43 | ″ | ″ | operators |
44 | ″ | ″ | optimization problem |
45 | ″ | ″ | order |
46 | ″ | ″ | paper |
47 | ″ | ″ | performance |
48 | ″ | ″ | principles |
49 | ″ | ″ | problem |
50 | ″ | ″ | procedure |
51 | ″ | ″ | purpose |
52 | ″ | ″ | real-life tasks |
53 | ″ | ″ | reliability |
54 | ″ | ″ | results |
55 | ″ | ″ | robustness |
56 | ″ | ″ | search |
57 | ″ | ″ | search metaheuristic |
58 | ″ | ″ | search procedure |
59 | ″ | ″ | selection principle |
60 | ″ | ″ | set problem |
61 | ″ | ″ | similar performance |
62 | ″ | ″ | solution |
63 | ″ | ″ | state |
64 | ″ | ″ | strength characteristics |
65 | ″ | ″ | tabu search |
66 | ″ | ″ | tabu search metaheuristic |
67 | ″ | ″ | task |
68 | ″ | ″ | terms |
69 | ″ | ″ | vertices |
70 | ″ | schema:name | A Hybrid Immunological Search for the Weighted Feedback Vertex Set Problem |
71 | ″ | schema:pagination | 1-16 |
72 | ″ | schema:productId | N1189b64cf5754e99a7f383b8ececec66 |
73 | ″ | ″ | Nbceb26ef87a24b1c8d70900f57e6b44c |
74 | ″ | schema:publisher | Nb2de9317de224a3497fb4c99c60fe39b |
75 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1124216802 |
76 | ″ | ″ | https://doi.org/10.1007/978-3-030-38629-0_1 |
77 | ″ | schema:sdDatePublished | 2022-05-20T07:47 |
78 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
79 | ″ | schema:sdPublisher | N97b6db6a5b7b4918893127e7e95a16f4 |
80 | ″ | schema:url | https://doi.org/10.1007/978-3-030-38629-0_1 |
81 | ″ | sgo:license | sg:explorer/license/ |
82 | ″ | sgo:sdDataset | chapters |
83 | ″ | rdf:type | schema:Chapter |
84 | N04a5795e9ea44ff1b9557edb0dfc4faa | rdf:first | N68fd1b5293ba4a4b9f47859b8564a29b |
85 | ″ | rdf:rest | rdf:nil |
86 | N1189b64cf5754e99a7f383b8ececec66 | schema:name | doi |
87 | ″ | schema:value | 10.1007/978-3-030-38629-0_1 |
88 | ″ | rdf:type | schema:PropertyValue |
89 | N201d4a5d350f424a908b923c04a18e39 | rdf:first | sg:person.012340437717.50 |
90 | ″ | rdf:rest | Nd9d0626e8c7543709ab98564d49bebfc |
91 | N2c69bcfb87fb41af9acfc4f0d85e8d52 | schema:familyName | Marinakis |
92 | ″ | schema:givenName | Yannis |
93 | ″ | rdf:type | schema:Person |
94 | N2d51c2ff9269451c93e87f2f209727c4 | rdf:first | N47e97910c88b4c0b955fc9adcb2cf83d |
95 | ″ | rdf:rest | N5d86f811d54849c19b65a85566119f7e |
96 | N3b971bb4a79e42cdb1e0f3bc78da6c44 | schema:isbn | 978-3-030-38628-3 |
97 | ″ | ″ | 978-3-030-38629-0 |
98 | ″ | schema:name | Learning and Intelligent Optimization |
99 | ″ | rdf:type | schema:Book |
100 | N47e97910c88b4c0b955fc9adcb2cf83d | schema:familyName | Matsatsinis |
101 | ″ | schema:givenName | Nikolaos F. |
102 | ″ | rdf:type | schema:Person |
103 | N5d86f811d54849c19b65a85566119f7e | rdf:first | N2c69bcfb87fb41af9acfc4f0d85e8d52 |
104 | ″ | rdf:rest | N04a5795e9ea44ff1b9557edb0dfc4faa |
105 | N68fd1b5293ba4a4b9f47859b8564a29b | schema:familyName | Pardalos |
106 | ″ | schema:givenName | Panos |
107 | ″ | rdf:type | schema:Person |
108 | N6f8e823ed9ba4d62a2b84ec288a52d34 | schema:affiliation | grid-institutes:grid.8158.4 |
109 | ″ | schema:familyName | Cutello |
110 | ″ | schema:givenName | Vincenco |
111 | ″ | rdf:type | schema:Person |
112 | N97b6db6a5b7b4918893127e7e95a16f4 | schema:name | Springer Nature - SN SciGraph project |
113 | ″ | rdf:type | schema:Organization |
114 | Nb2de9317de224a3497fb4c99c60fe39b | schema:name | Springer Nature |
115 | ″ | rdf:type | schema:Organisation |
116 | Nbceb26ef87a24b1c8d70900f57e6b44c | schema:name | dimensions_id |
117 | ″ | schema:value | pub.1124216802 |
118 | ″ | rdf:type | schema:PropertyValue |
119 | Nd35d037fe7bb4d6d82ab71b5b9920c16 | rdf:first | sg:person.016661443761.18 |
120 | ″ | rdf:rest | rdf:nil |
121 | Nd9d0626e8c7543709ab98564d49bebfc | rdf:first | sg:person.07350620665.82 |
122 | ″ | rdf:rest | Nd35d037fe7bb4d6d82ab71b5b9920c16 |
123 | Ne380a8f6a66b4ce290788d809a251221 | rdf:first | N6f8e823ed9ba4d62a2b84ec288a52d34 |
124 | ″ | rdf:rest | N201d4a5d350f424a908b923c04a18e39 |
125 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
126 | ″ | schema:name | Information and Computing Sciences |
127 | ″ | rdf:type | schema:DefinedTerm |
128 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
129 | ″ | schema:name | Artificial Intelligence and Image Processing |
130 | ″ | rdf:type | schema:DefinedTerm |
131 | sg:person.012340437717.50 | schema:affiliation | grid-institutes:grid.8158.4 |
132 | ″ | schema:familyName | Oliva |
133 | ″ | schema:givenName | Maria |
134 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012340437717.50 |
135 | ″ | rdf:type | schema:Person |
136 | sg:person.016661443761.18 | schema:affiliation | grid-institutes:grid.8158.4 |
137 | ″ | schema:familyName | Scollo |
138 | ″ | schema:givenName | Rocco A. |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661443761.18 |
140 | ″ | rdf:type | schema:Person |
141 | sg:person.07350620665.82 | schema:affiliation | grid-institutes:grid.8158.4 |
142 | ″ | schema:familyName | Pavone |
143 | ″ | schema:givenName | Mario |
144 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350620665.82 |
145 | ″ | rdf:type | schema:Person |
146 | grid-institutes:grid.8158.4 | schema:alternateName | Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy |
147 | ″ | schema:name | Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy |
148 | ″ | rdf:type | schema:Organization |