Ontology type: schema:Chapter
2020-01-10
AUTHORSYosuke Todo , Willi Meier , Kazumaro Aoki
ABSTRACTMany cryptographers have focused on lightweight cryptography, and a huge number of lightweight block ciphers have been proposed. On the other hand, designing lightweight stream ciphers is a challenging task due to the well-known security criteria, i.e., the state size of stream ciphers must be at least twice the key size. The designers of Sprout addressed this issue by involving the secret key not only in the initialization but also in the keystream generation, and the state size of such stream ciphers can be smaller than twice the key size. After the seminal work, some small-state stream ciphers have been proposed such as Fruit, Plantlet, and LIZARD. Unlike conventional stream ciphers, these small-state stream ciphers have the limitation of keystream bits that can be generated from the same key and IV pair. In this paper, our motivation is to show whether the data limitation claimed by the designers is proper or not. The correlation attack is one of the attack methods exploiting many keystream bits generated from the same key and IV pair, and we apply it to Fruit-80 and Plantlet. As a result, we can break the full Fruit-80, i.e., the designers’ data limitation is not sufficient. We can also recover the secret key of Plantlet if it allows about \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{53}$$\end{document} keystream bits from the same key and IV pair. More... »
PAGES365-392
Selected Areas in Cryptography – SAC 2019
ISBN
978-3-030-38470-8
978-3-030-38471-5
http://scigraph.springernature.com/pub.10.1007/978-3-030-38471-5_15
DOIhttp://dx.doi.org/10.1007/978-3-030-38471-5_15
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1123979143
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Data Format",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "NTT Secure Platform Laboratories, 180-8585, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.419819.c",
"name": [
"NTT Secure Platform Laboratories, 180-8585, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Todo",
"givenName": "Yosuke",
"id": "sg:person.013247762751.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013247762751.78"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "FHNW, Windisch, Switzerland",
"id": "http://www.grid.ac/institutes/grid.410380.e",
"name": [
"FHNW, Windisch, Switzerland"
],
"type": "Organization"
},
"familyName": "Meier",
"givenName": "Willi",
"id": "sg:person.07653531142.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653531142.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "NTT Secure Platform Laboratories, 180-8585, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.419819.c",
"name": [
"NTT Secure Platform Laboratories, 180-8585, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Aoki",
"givenName": "Kazumaro",
"id": "sg:person.015040765627.38",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015040765627.38"
],
"type": "Person"
}
],
"datePublished": "2020-01-10",
"datePublishedReg": "2020-01-10",
"description": "Many cryptographers have focused on lightweight cryptography, and a huge number of lightweight block ciphers have been proposed. On the other hand, designing lightweight stream ciphers is a challenging task due to the well-known security criteria, i.e., the state size of stream ciphers must be at least twice the key size. The designers of Sprout addressed this issue by involving the secret key not only in the initialization but also in the keystream generation, and the state size of such stream ciphers can be smaller than twice the key size. After the seminal work, some small-state stream ciphers have been proposed such as Fruit, Plantlet, and LIZARD. Unlike conventional stream ciphers, these small-state stream ciphers have the limitation of keystream bits that can be generated from the same key and IV pair. In this paper, our motivation is to show whether the data limitation claimed by the designers is proper or not. The correlation attack is one of the attack methods exploiting many keystream bits generated from the same key and IV pair, and we apply it to Fruit-80 and Plantlet. As a result, we can break the full Fruit-80, i.e., the designers\u2019 data limitation is not sufficient. We can also recover the secret key of Plantlet if it allows about \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2^{53}$$\\end{document} keystream bits from the same key and IV pair.",
"editor": [
{
"familyName": "Paterson",
"givenName": "Kenneth G.",
"type": "Person"
},
{
"familyName": "Stebila",
"givenName": "Douglas",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-38471-5_15",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-38470-8",
"978-3-030-38471-5"
],
"name": "Selected Areas in Cryptography \u2013 SAC 2019",
"type": "Book"
},
"keywords": [
"stream cipher",
"same key",
"key size",
"secret key",
"correlation attacks",
"conventional stream ciphers",
"lightweight stream cipher",
"lightweight block ciphers",
"lightweight cryptography",
"attack methods",
"keystream generation",
"security criteria",
"state size",
"keystream bits",
"challenging task",
"block cipher",
"cipher",
"huge number",
"such stream ciphers",
"designers",
"bits",
"attacks",
"key",
"cryptography",
"cryptographers",
"initialization",
"task",
"limitations",
"data limitations",
"seminal work",
"issues",
"work",
"pairs",
"method",
"generation",
"motivation",
"number",
"hand",
"size",
"results",
"criteria",
"fruit",
"sprouts",
"paper",
"lizards",
"plantlets"
],
"name": "On the Data Limitation of Small-State Stream Ciphers: Correlation Attacks on Fruit-80 and Plantlet",
"pagination": "365-392",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1123979143"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-38471-5_15"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-38471-5_15",
"https://app.dimensions.ai/details/publication/pub.1123979143"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:43",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_189.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-38471-5_15"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-38471-5_15'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-38471-5_15'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-38471-5_15'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-38471-5_15'
This table displays all metadata directly associated to this object as RDF triples.
128 TRIPLES
23 PREDICATES
71 URIs
64 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-38471-5_15 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0804 |
3 | ″ | schema:author | Nc0668943b7ee4d759268d50f209f92b6 |
4 | ″ | schema:datePublished | 2020-01-10 |
5 | ″ | schema:datePublishedReg | 2020-01-10 |
6 | ″ | schema:description | Many cryptographers have focused on lightweight cryptography, and a huge number of lightweight block ciphers have been proposed. On the other hand, designing lightweight stream ciphers is a challenging task due to the well-known security criteria, i.e., the state size of stream ciphers must be at least twice the key size. The designers of Sprout addressed this issue by involving the secret key not only in the initialization but also in the keystream generation, and the state size of such stream ciphers can be smaller than twice the key size. After the seminal work, some small-state stream ciphers have been proposed such as Fruit, Plantlet, and LIZARD. Unlike conventional stream ciphers, these small-state stream ciphers have the limitation of keystream bits that can be generated from the same key and IV pair. In this paper, our motivation is to show whether the data limitation claimed by the designers is proper or not. The correlation attack is one of the attack methods exploiting many keystream bits generated from the same key and IV pair, and we apply it to Fruit-80 and Plantlet. As a result, we can break the full Fruit-80, i.e., the designers’ data limitation is not sufficient. We can also recover the secret key of Plantlet if it allows about \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{53}$$\end{document} keystream bits from the same key and IV pair. |
7 | ″ | schema:editor | N03d830ab2c144108b71d1d88d6c0f822 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N5ca02472989b409aa66de750559f63a7 |
12 | ″ | schema:keywords | attack methods |
13 | ″ | ″ | attacks |
14 | ″ | ″ | bits |
15 | ″ | ″ | block cipher |
16 | ″ | ″ | challenging task |
17 | ″ | ″ | cipher |
18 | ″ | ″ | conventional stream ciphers |
19 | ″ | ″ | correlation attacks |
20 | ″ | ″ | criteria |
21 | ″ | ″ | cryptographers |
22 | ″ | ″ | cryptography |
23 | ″ | ″ | data limitations |
24 | ″ | ″ | designers |
25 | ″ | ″ | fruit |
26 | ″ | ″ | generation |
27 | ″ | ″ | hand |
28 | ″ | ″ | huge number |
29 | ″ | ″ | initialization |
30 | ″ | ″ | issues |
31 | ″ | ″ | key |
32 | ″ | ″ | key size |
33 | ″ | ″ | keystream bits |
34 | ″ | ″ | keystream generation |
35 | ″ | ″ | lightweight block ciphers |
36 | ″ | ″ | lightweight cryptography |
37 | ″ | ″ | lightweight stream cipher |
38 | ″ | ″ | limitations |
39 | ″ | ″ | lizards |
40 | ″ | ″ | method |
41 | ″ | ″ | motivation |
42 | ″ | ″ | number |
43 | ″ | ″ | pairs |
44 | ″ | ″ | paper |
45 | ″ | ″ | plantlets |
46 | ″ | ″ | results |
47 | ″ | ″ | same key |
48 | ″ | ″ | secret key |
49 | ″ | ″ | security criteria |
50 | ″ | ″ | seminal work |
51 | ″ | ″ | size |
52 | ″ | ″ | sprouts |
53 | ″ | ″ | state size |
54 | ″ | ″ | stream cipher |
55 | ″ | ″ | such stream ciphers |
56 | ″ | ″ | task |
57 | ″ | ″ | work |
58 | ″ | schema:name | On the Data Limitation of Small-State Stream Ciphers: Correlation Attacks on Fruit-80 and Plantlet |
59 | ″ | schema:pagination | 365-392 |
60 | ″ | schema:productId | N59108cf8a5a4482fb21a5f0fa2f41d0e |
61 | ″ | ″ | Nde3ccc2c82584662a66233f9f045a591 |
62 | ″ | schema:publisher | N2a74e4e557354620852b74c7078e0c0d |
63 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1123979143 |
64 | ″ | ″ | https://doi.org/10.1007/978-3-030-38471-5_15 |
65 | ″ | schema:sdDatePublished | 2022-05-20T07:43 |
66 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
67 | ″ | schema:sdPublisher | N8b9e18b116c04149a7d6efe1d5ed2adc |
68 | ″ | schema:url | https://doi.org/10.1007/978-3-030-38471-5_15 |
69 | ″ | sgo:license | sg:explorer/license/ |
70 | ″ | sgo:sdDataset | chapters |
71 | ″ | rdf:type | schema:Chapter |
72 | N03d830ab2c144108b71d1d88d6c0f822 | rdf:first | N069c41258fa045c086c5cc347ee06758 |
73 | ″ | rdf:rest | N88fb1c9126194877889ba1d0fd6f036f |
74 | N069c41258fa045c086c5cc347ee06758 | schema:familyName | Paterson |
75 | ″ | schema:givenName | Kenneth G. |
76 | ″ | rdf:type | schema:Person |
77 | N07896f8e8d5f46f6bf096a479d7f70c4 | rdf:first | sg:person.07653531142.18 |
78 | ″ | rdf:rest | Nc96c6f140d6444f0bafa7d83ee8223aa |
79 | N2a74e4e557354620852b74c7078e0c0d | schema:name | Springer Nature |
80 | ″ | rdf:type | schema:Organisation |
81 | N59108cf8a5a4482fb21a5f0fa2f41d0e | schema:name | doi |
82 | ″ | schema:value | 10.1007/978-3-030-38471-5_15 |
83 | ″ | rdf:type | schema:PropertyValue |
84 | N5ca02472989b409aa66de750559f63a7 | schema:isbn | 978-3-030-38470-8 |
85 | ″ | ″ | 978-3-030-38471-5 |
86 | ″ | schema:name | Selected Areas in Cryptography – SAC 2019 |
87 | ″ | rdf:type | schema:Book |
88 | N88fb1c9126194877889ba1d0fd6f036f | rdf:first | N91ca0b98e9834f7d9d88d54c7247d2c3 |
89 | ″ | rdf:rest | rdf:nil |
90 | N8b9e18b116c04149a7d6efe1d5ed2adc | schema:name | Springer Nature - SN SciGraph project |
91 | ″ | rdf:type | schema:Organization |
92 | N91ca0b98e9834f7d9d88d54c7247d2c3 | schema:familyName | Stebila |
93 | ″ | schema:givenName | Douglas |
94 | ″ | rdf:type | schema:Person |
95 | Nc0668943b7ee4d759268d50f209f92b6 | rdf:first | sg:person.013247762751.78 |
96 | ″ | rdf:rest | N07896f8e8d5f46f6bf096a479d7f70c4 |
97 | Nc96c6f140d6444f0bafa7d83ee8223aa | rdf:first | sg:person.015040765627.38 |
98 | ″ | rdf:rest | rdf:nil |
99 | Nde3ccc2c82584662a66233f9f045a591 | schema:name | dimensions_id |
100 | ″ | schema:value | pub.1123979143 |
101 | ″ | rdf:type | schema:PropertyValue |
102 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Information and Computing Sciences |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | anzsrc-for:0804 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Data Format |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | sg:person.013247762751.78 | schema:affiliation | grid-institutes:grid.419819.c |
109 | ″ | schema:familyName | Todo |
110 | ″ | schema:givenName | Yosuke |
111 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013247762751.78 |
112 | ″ | rdf:type | schema:Person |
113 | sg:person.015040765627.38 | schema:affiliation | grid-institutes:grid.419819.c |
114 | ″ | schema:familyName | Aoki |
115 | ″ | schema:givenName | Kazumaro |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015040765627.38 |
117 | ″ | rdf:type | schema:Person |
118 | sg:person.07653531142.18 | schema:affiliation | grid-institutes:grid.410380.e |
119 | ″ | schema:familyName | Meier |
120 | ″ | schema:givenName | Willi |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653531142.18 |
122 | ″ | rdf:type | schema:Person |
123 | grid-institutes:grid.410380.e | schema:alternateName | FHNW, Windisch, Switzerland |
124 | ″ | schema:name | FHNW, Windisch, Switzerland |
125 | ″ | rdf:type | schema:Organization |
126 | grid-institutes:grid.419819.c | schema:alternateName | NTT Secure Platform Laboratories, 180-8585, Tokyo, Japan |
127 | ″ | schema:name | NTT Secure Platform Laboratories, 180-8585, Tokyo, Japan |
128 | ″ | rdf:type | schema:Organization |