Ontology type: schema:Chapter Open Access: True
2019-11-23
AUTHORSYong Chen , Zhi-Zhong Chen , Guohui Lin , Yao Xu , An Zhang
ABSTRACTGiven a simple connected graph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document}, we seek to partition the vertex set V into k non-empty parts such that the subgraph induced by each part is connected, and the partition is maximally balanced in the way that the maximum cardinality of these k parts is minimized. We refer this problem to as min-max balanced connected graph partition into k parts and denote it as k-BGP. The general vertex-weighted version of this problem on trees has been studied since about four decades ago, which admits a linear time exact algorithm; the vertex-weighted 2-BGP and 3-BGP admit a 5/4-approximation and a 3/2-approximation, respectively; but no approximability result exists for k-BGP when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 4$$\end{document}, except a trivial k-approximation. In this paper, we present another 3/2-approximation for our cardinality 3-BGP and then extend it to become a k/2-approximation for k-BGP, for any constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 3$$\end{document}. Furthermore, for 4-BGP, we propose an improved 24/13-approximation. To these purposes, we have designed several local improvement operations, which could be useful for related graph partition problems. More... »
PAGES130-141
Combinatorial Optimization and Applications
ISBN
978-3-030-36411-3
978-3-030-36412-0
http://scigraph.springernature.com/pub.10.1007/978-3-030-36412-0_11
DOIhttp://dx.doi.org/10.1007/978-3-030-36412-0_11
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1123159174
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China",
"id": "http://www.grid.ac/institutes/grid.411963.8",
"name": [
"Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China"
],
"type": "Organization"
},
"familyName": "Chen",
"givenName": "Yong",
"id": "sg:person.010555136403.19",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010555136403.19"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Division of Information System Design, Tokyo Denki University, Saitama, Japan",
"id": "http://www.grid.ac/institutes/grid.412773.4",
"name": [
"Division of Information System Design, Tokyo Denki University, Saitama, Japan"
],
"type": "Organization"
},
"familyName": "Chen",
"givenName": "Zhi-Zhong",
"id": "sg:person.015654265661.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015654265661.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computing Science, University of Alberta, Edmonton, Canada",
"id": "http://www.grid.ac/institutes/grid.17089.37",
"name": [
"Department of Computing Science, University of Alberta, Edmonton, Canada"
],
"type": "Organization"
},
"familyName": "Lin",
"givenName": "Guohui",
"id": "sg:person.01130357621.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130357621.02"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, Kettering University, Flint, MI, USA",
"id": "http://www.grid.ac/institutes/grid.258550.f",
"name": [
"Department of Computer Science, Kettering University, Flint, MI, USA"
],
"type": "Organization"
},
"familyName": "Xu",
"givenName": "Yao",
"id": "sg:person.016633362253.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016633362253.49"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China",
"id": "http://www.grid.ac/institutes/grid.411963.8",
"name": [
"Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China"
],
"type": "Organization"
},
"familyName": "Zhang",
"givenName": "An",
"id": "sg:person.015273653637.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015273653637.29"
],
"type": "Person"
}
],
"datePublished": "2019-11-23",
"datePublishedReg": "2019-11-23",
"description": "Given a simple connected graph \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G = (V, E)$$\\end{document}, we seek to partition the vertex set V into k non-empty parts such that the subgraph induced by each part is connected, and the partition is maximally balanced in the way that the maximum cardinality of these k parts is minimized. We refer this problem to as min-max balanced connected graph partition into k parts and denote it as k-BGP. The general vertex-weighted version of this problem on trees has been studied since about four decades ago, which admits a linear time exact algorithm; the vertex-weighted 2-BGP and 3-BGP admit a 5/4-approximation and a 3/2-approximation, respectively; but no approximability result exists for k-BGP when \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$k \\ge 4$$\\end{document}, except a trivial k-approximation. In this paper, we present another 3/2-approximation for our cardinality 3-BGP and then extend it to become a k/2-approximation for k-BGP, for any constant \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$k \\ge 3$$\\end{document}. Furthermore, for 4-BGP, we propose an improved 24/13-approximation. To these purposes, we have designed several local improvement operations, which could be useful for related graph partition problems.",
"editor": [
{
"familyName": "Li",
"givenName": "Yingshu",
"type": "Person"
},
{
"familyName": "Cardei",
"givenName": "Mihaela",
"type": "Person"
},
{
"familyName": "Huang",
"givenName": "Yan",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-36412-0_11",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-030-36411-3",
"978-3-030-36412-0"
],
"name": "Combinatorial Optimization and Applications",
"type": "Book"
},
"keywords": [
"graph partition",
"graph partition problem",
"simple connected graph",
"k parts",
"linear time exact algorithm",
"time exact algorithm",
"approximability results",
"approximation algorithm",
"connected graph",
"maximum cardinality",
"min-max",
"exact algorithm",
"k-approximation",
"partition problem",
"cardinality",
"problem",
"algorithm",
"graph",
"vertices",
"non-empty parts",
"subgraphs",
"partition",
"local improvement operations",
"improvement operations",
"version",
"part",
"way",
"results",
"operation",
"trees",
"decades",
"purpose",
"paper"
],
"name": "Approximation Algorithms for Maximally Balanced Connected Graph Partition",
"pagination": "130-141",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1123159174"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-36412-0_11"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-36412-0_11",
"https://app.dimensions.ai/details/publication/pub.1123159174"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:48",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_50.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-36412-0_11"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-36412-0_11'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-36412-0_11'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-36412-0_11'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-36412-0_11'
This table displays all metadata directly associated to this object as RDF triples.
140 TRIPLES
23 PREDICATES
58 URIs
51 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-36412-0_11 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0802 |
3 | ″ | schema:author | N2d2b07ccb3ab4fbcb6149c4dc795a6bf |
4 | ″ | schema:datePublished | 2019-11-23 |
5 | ″ | schema:datePublishedReg | 2019-11-23 |
6 | ″ | schema:description | Given a simple connected graph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document}, we seek to partition the vertex set V into k non-empty parts such that the subgraph induced by each part is connected, and the partition is maximally balanced in the way that the maximum cardinality of these k parts is minimized. We refer this problem to as min-max balanced connected graph partition into k parts and denote it as k-BGP. The general vertex-weighted version of this problem on trees has been studied since about four decades ago, which admits a linear time exact algorithm; the vertex-weighted 2-BGP and 3-BGP admit a 5/4-approximation and a 3/2-approximation, respectively; but no approximability result exists for k-BGP when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 4$$\end{document}, except a trivial k-approximation. In this paper, we present another 3/2-approximation for our cardinality 3-BGP and then extend it to become a k/2-approximation for k-BGP, for any constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 3$$\end{document}. Furthermore, for 4-BGP, we propose an improved 24/13-approximation. To these purposes, we have designed several local improvement operations, which could be useful for related graph partition problems. |
7 | ″ | schema:editor | N5f4722a6f30a49f291ccc4440e6b5232 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | Ne170c378b85b45b88f0fde01cea8fb66 |
12 | ″ | schema:keywords | algorithm |
13 | ″ | ″ | approximability results |
14 | ″ | ″ | approximation algorithm |
15 | ″ | ″ | cardinality |
16 | ″ | ″ | connected graph |
17 | ″ | ″ | decades |
18 | ″ | ″ | exact algorithm |
19 | ″ | ″ | graph |
20 | ″ | ″ | graph partition |
21 | ″ | ″ | graph partition problem |
22 | ″ | ″ | improvement operations |
23 | ″ | ″ | k parts |
24 | ″ | ″ | k-approximation |
25 | ″ | ″ | linear time exact algorithm |
26 | ″ | ″ | local improvement operations |
27 | ″ | ″ | maximum cardinality |
28 | ″ | ″ | min-max |
29 | ″ | ″ | non-empty parts |
30 | ″ | ″ | operation |
31 | ″ | ″ | paper |
32 | ″ | ″ | part |
33 | ″ | ″ | partition |
34 | ″ | ″ | partition problem |
35 | ″ | ″ | problem |
36 | ″ | ″ | purpose |
37 | ″ | ″ | results |
38 | ″ | ″ | simple connected graph |
39 | ″ | ″ | subgraphs |
40 | ″ | ″ | time exact algorithm |
41 | ″ | ″ | trees |
42 | ″ | ″ | version |
43 | ″ | ″ | vertices |
44 | ″ | ″ | way |
45 | ″ | schema:name | Approximation Algorithms for Maximally Balanced Connected Graph Partition |
46 | ″ | schema:pagination | 130-141 |
47 | ″ | schema:productId | N845c6fd28e694028a9a2bf4e38710855 |
48 | ″ | ″ | Ne258c9a451f0423092d4641b709ce3b1 |
49 | ″ | schema:publisher | Nfae8df11aab346b7bea063075d0168c1 |
50 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1123159174 |
51 | ″ | ″ | https://doi.org/10.1007/978-3-030-36412-0_11 |
52 | ″ | schema:sdDatePublished | 2022-05-20T07:48 |
53 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
54 | ″ | schema:sdPublisher | N825f78818bf14945b325a6534519426a |
55 | ″ | schema:url | https://doi.org/10.1007/978-3-030-36412-0_11 |
56 | ″ | sgo:license | sg:explorer/license/ |
57 | ″ | sgo:sdDataset | chapters |
58 | ″ | rdf:type | schema:Chapter |
59 | N133ae606afae48aeb8c8d6ff895db82c | rdf:first | sg:person.01130357621.02 |
60 | ″ | rdf:rest | Nffc46930b9a2406cafde2018cc02ea93 |
61 | N2d2b07ccb3ab4fbcb6149c4dc795a6bf | rdf:first | sg:person.010555136403.19 |
62 | ″ | rdf:rest | Na0d09f00119542ca845478e9110c4188 |
63 | N2f071a2ff9df4ce6b7c7c560c6e3b8dc | schema:familyName | Cardei |
64 | ″ | schema:givenName | Mihaela |
65 | ″ | rdf:type | schema:Person |
66 | N2fc934b29ddc42f2946bc08229fd2c2b | rdf:first | N8088e2e03efb4adc98cfa6f3dc7fe329 |
67 | ″ | rdf:rest | rdf:nil |
68 | N5f4722a6f30a49f291ccc4440e6b5232 | rdf:first | Nf12c05c0fa7f491b8980aea1391a5114 |
69 | ″ | rdf:rest | N96dddc2e7e4242c6ac8af535c298692e |
70 | N8088e2e03efb4adc98cfa6f3dc7fe329 | schema:familyName | Huang |
71 | ″ | schema:givenName | Yan |
72 | ″ | rdf:type | schema:Person |
73 | N825f78818bf14945b325a6534519426a | schema:name | Springer Nature - SN SciGraph project |
74 | ″ | rdf:type | schema:Organization |
75 | N845c6fd28e694028a9a2bf4e38710855 | schema:name | doi |
76 | ″ | schema:value | 10.1007/978-3-030-36412-0_11 |
77 | ″ | rdf:type | schema:PropertyValue |
78 | N96dddc2e7e4242c6ac8af535c298692e | rdf:first | N2f071a2ff9df4ce6b7c7c560c6e3b8dc |
79 | ″ | rdf:rest | N2fc934b29ddc42f2946bc08229fd2c2b |
80 | Na0d09f00119542ca845478e9110c4188 | rdf:first | sg:person.015654265661.98 |
81 | ″ | rdf:rest | N133ae606afae48aeb8c8d6ff895db82c |
82 | Ne05d0bb857144118869d8066f2e812e9 | rdf:first | sg:person.015273653637.29 |
83 | ″ | rdf:rest | rdf:nil |
84 | Ne170c378b85b45b88f0fde01cea8fb66 | schema:isbn | 978-3-030-36411-3 |
85 | ″ | ″ | 978-3-030-36412-0 |
86 | ″ | schema:name | Combinatorial Optimization and Applications |
87 | ″ | rdf:type | schema:Book |
88 | Ne258c9a451f0423092d4641b709ce3b1 | schema:name | dimensions_id |
89 | ″ | schema:value | pub.1123159174 |
90 | ″ | rdf:type | schema:PropertyValue |
91 | Nf12c05c0fa7f491b8980aea1391a5114 | schema:familyName | Li |
92 | ″ | schema:givenName | Yingshu |
93 | ″ | rdf:type | schema:Person |
94 | Nfae8df11aab346b7bea063075d0168c1 | schema:name | Springer Nature |
95 | ″ | rdf:type | schema:Organisation |
96 | Nffc46930b9a2406cafde2018cc02ea93 | rdf:first | sg:person.016633362253.49 |
97 | ″ | rdf:rest | Ne05d0bb857144118869d8066f2e812e9 |
98 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
99 | ″ | schema:name | Information and Computing Sciences |
100 | ″ | rdf:type | schema:DefinedTerm |
101 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
102 | ″ | schema:name | Computation Theory and Mathematics |
103 | ″ | rdf:type | schema:DefinedTerm |
104 | sg:person.010555136403.19 | schema:affiliation | grid-institutes:grid.411963.8 |
105 | ″ | schema:familyName | Chen |
106 | ″ | schema:givenName | Yong |
107 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010555136403.19 |
108 | ″ | rdf:type | schema:Person |
109 | sg:person.01130357621.02 | schema:affiliation | grid-institutes:grid.17089.37 |
110 | ″ | schema:familyName | Lin |
111 | ″ | schema:givenName | Guohui |
112 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130357621.02 |
113 | ″ | rdf:type | schema:Person |
114 | sg:person.015273653637.29 | schema:affiliation | grid-institutes:grid.411963.8 |
115 | ″ | schema:familyName | Zhang |
116 | ″ | schema:givenName | An |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015273653637.29 |
118 | ″ | rdf:type | schema:Person |
119 | sg:person.015654265661.98 | schema:affiliation | grid-institutes:grid.412773.4 |
120 | ″ | schema:familyName | Chen |
121 | ″ | schema:givenName | Zhi-Zhong |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015654265661.98 |
123 | ″ | rdf:type | schema:Person |
124 | sg:person.016633362253.49 | schema:affiliation | grid-institutes:grid.258550.f |
125 | ″ | schema:familyName | Xu |
126 | ″ | schema:givenName | Yao |
127 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016633362253.49 |
128 | ″ | rdf:type | schema:Person |
129 | grid-institutes:grid.17089.37 | schema:alternateName | Department of Computing Science, University of Alberta, Edmonton, Canada |
130 | ″ | schema:name | Department of Computing Science, University of Alberta, Edmonton, Canada |
131 | ″ | rdf:type | schema:Organization |
132 | grid-institutes:grid.258550.f | schema:alternateName | Department of Computer Science, Kettering University, Flint, MI, USA |
133 | ″ | schema:name | Department of Computer Science, Kettering University, Flint, MI, USA |
134 | ″ | rdf:type | schema:Organization |
135 | grid-institutes:grid.411963.8 | schema:alternateName | Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China |
136 | ″ | schema:name | Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China |
137 | ″ | rdf:type | schema:Organization |
138 | grid-institutes:grid.412773.4 | schema:alternateName | Division of Information System Design, Tokyo Denki University, Saitama, Japan |
139 | ″ | schema:name | Division of Information System Design, Tokyo Denki University, Saitama, Japan |
140 | ″ | rdf:type | schema:Organization |