Ontology type: schema:Chapter
2019-11-23
AUTHORSYong Chen , Zhi-Zhong Chen , Guohui Lin , Lusheng Wang , An Zhang
ABSTRACTGiven an edge-weighted complete graph G on 3n vertices, the maximum-weight triangle packing problem (MWTP for short) asks for a collection of n vertex-disjoint triangles in G such that the total weight of edges in these n triangles is maximized. Although MWTP has been extensively studied in the literature, it is surprising that prior to this work, no nontrivial approximation algorithm had been designed and analyzed for its metric case (denoted by MMWTP), where the edge weights in the input graph satisfy the triangle inequality. In this paper, we design the first nontrivial polynomial-time approximation algorithm for MMWTP. Our algorithm is randomized and achieves an expected approximation ratio of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.66745 - \epsilon $$\end{document} for any constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon > 0$$\end{document}. More... »
PAGES119-129
Combinatorial Optimization and Applications
ISBN
978-3-030-36411-3
978-3-030-36412-0
http://scigraph.springernature.com/pub.10.1007/978-3-030-36412-0_10
DOIhttp://dx.doi.org/10.1007/978-3-030-36412-0_10
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1123154522
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China",
"id": "http://www.grid.ac/institutes/grid.411963.8",
"name": [
"Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China"
],
"type": "Organization"
},
"familyName": "Chen",
"givenName": "Yong",
"id": "sg:person.010555136403.19",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010555136403.19"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Division of Information System Design, Tokyo Denki University, Saitama, Japan",
"id": "http://www.grid.ac/institutes/grid.412773.4",
"name": [
"Division of Information System Design, Tokyo Denki University, Saitama, Japan"
],
"type": "Organization"
},
"familyName": "Chen",
"givenName": "Zhi-Zhong",
"id": "sg:person.015654265661.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015654265661.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computing Science, University of Alberta, Edmonton, Canada",
"id": "http://www.grid.ac/institutes/grid.17089.37",
"name": [
"Department of Computing Science, University of Alberta, Edmonton, Canada"
],
"type": "Organization"
},
"familyName": "Lin",
"givenName": "Guohui",
"id": "sg:person.01130357621.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130357621.02"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Lusheng",
"id": "sg:person.01105113721.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105113721.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China",
"id": "http://www.grid.ac/institutes/grid.411963.8",
"name": [
"Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China"
],
"type": "Organization"
},
"familyName": "Zhang",
"givenName": "An",
"id": "sg:person.015273653637.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015273653637.29"
],
"type": "Person"
}
],
"datePublished": "2019-11-23",
"datePublishedReg": "2019-11-23",
"description": "Given an edge-weighted complete graph G on 3n vertices, the maximum-weight triangle packing problem (MWTP for short) asks for a collection of n vertex-disjoint triangles in G such that the total weight of edges in these n triangles is maximized. Although MWTP has been extensively studied in the literature, it is surprising that prior to this work, no nontrivial approximation algorithm had been designed and analyzed for its metric case (denoted by MMWTP), where the edge weights in the input graph satisfy the triangle inequality. In this paper, we design the first nontrivial polynomial-time approximation algorithm for MMWTP. Our algorithm is randomized and achieves an expected approximation ratio of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$0.66745 - \\epsilon $$\\end{document} for any constant \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon > 0$$\\end{document}.",
"editor": [
{
"familyName": "Li",
"givenName": "Yingshu",
"type": "Person"
},
{
"familyName": "Cardei",
"givenName": "Mihaela",
"type": "Person"
},
{
"familyName": "Huang",
"givenName": "Yan",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-36412-0_10",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-36411-3",
"978-3-030-36412-0"
],
"name": "Combinatorial Optimization and Applications",
"type": "Book"
},
"keywords": [
"approximation algorithm",
"triangle packing problem",
"metric case",
"polynomial-time approximation algorithm",
"expected approximation ratio",
"randomized approximation algorithm",
"graph G",
"packing problem",
"vertex-disjoint triangles",
"nontrivial approximation algorithm",
"input graph",
"triangle inequality",
"approximation ratio",
"triangle packing",
"complete graph G",
"n triangles",
"algorithm",
"vertices",
"problem",
"triangle",
"edge",
"graph",
"inequality",
"total weight",
"literature",
"work",
"cases",
"ratio",
"packing",
"collection",
"weight",
"MWTP",
"paper"
],
"name": "A Randomized Approximation Algorithm for Metric Triangle Packing",
"pagination": "119-129",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1123154522"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-36412-0_10"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-36412-0_10",
"https://app.dimensions.ai/details/publication/pub.1123154522"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:49",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_91.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-36412-0_10"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-36412-0_10'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-36412-0_10'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-36412-0_10'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-36412-0_10'
This table displays all metadata directly associated to this object as RDF triples.
140 TRIPLES
23 PREDICATES
58 URIs
51 LITERALS
7 BLANK NODES