Ontology type: schema:Chapter
2020-01-28
AUTHORSIlya Zhukov , Alexander Kozulin , Anton Khrustalev , Evgeny Moskvichev , Alexander Vorozhtsov , Dmitry Lychagin
ABSTRACTThe paper presents a study on the effect of adding a small amount of particles to a technically pure aluminumAluminum alloy on its structureStructure and mechanical propertiesMechanical properties. For this purpose laboratory castings of Al 1100 alloy with the addition of 0.5 and 1.0 wt% Al2O3 were produced. The introduction of master alloys containing particles into the melt was accompanied by ultrasonic treatment. Images of the structureStructure of the alloys obtained showed that ultrasonic treatment contributes to producing a material with zero porosity; this fact is also confirmed by the measurement of density which values are close to the theoretical ones. Analysis of mechanical propertiesMechanical properties revealed that the conditional yield strength, tensile strength and hardness of the nanocomposite with a metal matrix Al 1100/wt. nano Al2O3 were prone to increase with increasing the percentage of aluminumAluminum oxide in the matrix alloy while reducing the plasticity. This behavior of studied alloys reinforced with nanoparticles is a consequence of refining the grain structureStructure of the material during crystallization due to the presence of particles acting as inoculants. More... »
PAGES465-470
Light Metals 2020
ISBN
978-3-030-36407-6
978-3-030-36408-3
http://scigraph.springernature.com/pub.10.1007/978-3-030-36408-3_66
DOIhttp://dx.doi.org/10.1007/978-3-030-36408-3_66
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1124345293
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "National Research Tomsk State University Tomsk, 634050, Tomsk, Russian Federation",
"id": "http://www.grid.ac/institutes/grid.77602.34",
"name": [
"National Research Tomsk State University Tomsk, 634050, Tomsk, Russian Federation"
],
"type": "Organization"
},
"familyName": "Zhukov",
"givenName": "Ilya",
"id": "sg:person.07644463311.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07644463311.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National Research Tomsk State University Tomsk, 634050, Tomsk, Russian Federation",
"id": "http://www.grid.ac/institutes/grid.77602.34",
"name": [
"National Research Tomsk State University Tomsk, 634050, Tomsk, Russian Federation"
],
"type": "Organization"
},
"familyName": "Kozulin",
"givenName": "Alexander",
"id": "sg:person.015565057335.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015565057335.53"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Akademicheskiy 2/4 Av, 634055, Tomsk, Russian Federation",
"id": "http://www.grid.ac/institutes/grid.467103.7",
"name": [
"National Research Tomsk State University Tomsk, 634050, Tomsk, Russian Federation",
"Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Akademicheskiy 2/4 Av, 634055, Tomsk, Russian Federation"
],
"type": "Organization"
},
"familyName": "Khrustalev",
"givenName": "Anton",
"id": "sg:person.013113265001.90",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113265001.90"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Akademicheskiy 2/4 Av, 634055, Tomsk, Russian Federation",
"id": "http://www.grid.ac/institutes/grid.467103.7",
"name": [
"Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Akademicheskiy 2/4 Av, 634055, Tomsk, Russian Federation"
],
"type": "Organization"
},
"familyName": "Moskvichev",
"givenName": "Evgeny",
"id": "sg:person.016507654151.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016507654151.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National Research Tomsk State University Tomsk, 634050, Tomsk, Russian Federation",
"id": "http://www.grid.ac/institutes/grid.77602.34",
"name": [
"National Research Tomsk State University Tomsk, 634050, Tomsk, Russian Federation"
],
"type": "Organization"
},
"familyName": "Vorozhtsov",
"givenName": "Alexander",
"id": "sg:person.0771536125.70",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National Research Tomsk State University Tomsk, 634050, Tomsk, Russian Federation",
"id": "http://www.grid.ac/institutes/grid.77602.34",
"name": [
"National Research Tomsk State University Tomsk, 634050, Tomsk, Russian Federation"
],
"type": "Organization"
},
"familyName": "Lychagin",
"givenName": "Dmitry",
"id": "sg:person.012340217062.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012340217062.33"
],
"type": "Person"
}
],
"datePublished": "2020-01-28",
"datePublishedReg": "2020-01-28",
"description": "The paper presents a study on the effect of adding a small amount of particles to a technically pure aluminumAluminum alloy on its structureStructure and mechanical propertiesMechanical properties. For this purpose laboratory castings of Al 1100 alloy with the addition of 0.5 and 1.0 wt% Al2O3 were produced. The introduction of master alloys containing particles into the melt was accompanied by ultrasonic treatment. Images of the structureStructure of the alloys obtained showed that ultrasonic treatment contributes to producing a material with zero porosity; this fact is also confirmed by the measurement of density which values are close to the theoretical ones. Analysis of mechanical propertiesMechanical properties revealed that the conditional yield strength, tensile strength and hardness of the nanocomposite with a metal matrix Al 1100/wt. nano Al2O3 were prone to increase with increasing the percentage of aluminumAluminum oxide in the matrix alloy while reducing the plasticity. This behavior of studied alloys reinforced with nanoparticles is a consequence of refining the grain structureStructure of the material during crystallization due to the presence of particles acting as inoculants.",
"editor": [
{
"familyName": "Tomsett",
"givenName": "Alan",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-36408-3_66",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-36407-6",
"978-3-030-36408-3"
],
"name": "Light Metals 2020",
"type": "Book"
},
"keywords": [
"mechanical propertiesMechanical properties",
"Al 1100 alloy",
"conditional yield strength",
"alumina nano-particles",
"aluminumAluminum alloys",
"matrix alloy",
"presence of particles",
"dispersion hardening",
"yield strength",
"Al 1100",
"nano-Al2O3",
"master alloy",
"mechanical properties",
"studied alloys",
"tensile strength",
"laboratory castings",
"alloy",
"nano particles",
"measurements of density",
"ultrasonic treatment",
"structureStructure",
"particles",
"Al2O3",
"theoretical ones",
"strength",
"properties",
"materials",
"casting",
"hardening",
"porosity",
"hardness",
"nanocomposites",
"small amount",
"oxide",
"refining",
"wt",
"nanoparticles",
"melt",
"treatment contributes",
"density",
"crystallization",
"measurements",
"behavior",
"amount",
"images",
"values",
"addition",
"effect",
"one",
"plasticity",
"analysis",
"introduction",
"impact",
"presence",
"study",
"fact",
"percentage",
"inoculants",
"treatment",
"consequences",
"contributes",
"paper"
],
"name": "Impact of Dispersion Hardening by Alumina Nano Particles on Mechanical Properties of Al 1100",
"pagination": "465-470",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1124345293"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-36408-3_66"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-36408-3_66",
"https://app.dimensions.ai/details/publication/pub.1124345293"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:49",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_84.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-36408-3_66"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-36408-3_66'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-36408-3_66'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-36408-3_66'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-36408-3_66'
This table displays all metadata directly associated to this object as RDF triples.
169 TRIPLES
23 PREDICATES
89 URIs
80 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-36408-3_66 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | ″ | anzsrc-for:09 |
4 | ″ | ″ | anzsrc-for:0912 |
5 | ″ | schema:author | Neda687b433914b778c4e332a1a2f5394 |
6 | ″ | schema:datePublished | 2020-01-28 |
7 | ″ | schema:datePublishedReg | 2020-01-28 |
8 | ″ | schema:description | The paper presents a study on the effect of adding a small amount of particles to a technically pure aluminumAluminum alloy on its structureStructure and mechanical propertiesMechanical properties. For this purpose laboratory castings of Al 1100 alloy with the addition of 0.5 and 1.0 wt% Al2O3 were produced. The introduction of master alloys containing particles into the melt was accompanied by ultrasonic treatment. Images of the structureStructure of the alloys obtained showed that ultrasonic treatment contributes to producing a material with zero porosity; this fact is also confirmed by the measurement of density which values are close to the theoretical ones. Analysis of mechanical propertiesMechanical properties revealed that the conditional yield strength, tensile strength and hardness of the nanocomposite with a metal matrix Al 1100/wt. nano Al2O3 were prone to increase with increasing the percentage of aluminumAluminum oxide in the matrix alloy while reducing the plasticity. This behavior of studied alloys reinforced with nanoparticles is a consequence of refining the grain structureStructure of the material during crystallization due to the presence of particles acting as inoculants. |
9 | ″ | schema:editor | Nff6a76ef1cca40d0a943fbbb3f25ff13 |
10 | ″ | schema:genre | chapter |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | Na1f04d3c896b4b5e8fc21dfbbc506df9 |
14 | ″ | schema:keywords | Al 1100 |
15 | ″ | ″ | Al 1100 alloy |
16 | ″ | ″ | Al2O3 |
17 | ″ | ″ | addition |
18 | ″ | ″ | alloy |
19 | ″ | ″ | alumina nano-particles |
20 | ″ | ″ | aluminumAluminum alloys |
21 | ″ | ″ | amount |
22 | ″ | ″ | analysis |
23 | ″ | ″ | behavior |
24 | ″ | ″ | casting |
25 | ″ | ″ | conditional yield strength |
26 | ″ | ″ | consequences |
27 | ″ | ″ | contributes |
28 | ″ | ″ | crystallization |
29 | ″ | ″ | density |
30 | ″ | ″ | dispersion hardening |
31 | ″ | ″ | effect |
32 | ″ | ″ | fact |
33 | ″ | ″ | hardening |
34 | ″ | ″ | hardness |
35 | ″ | ″ | images |
36 | ″ | ″ | impact |
37 | ″ | ″ | inoculants |
38 | ″ | ″ | introduction |
39 | ″ | ″ | laboratory castings |
40 | ″ | ″ | master alloy |
41 | ″ | ″ | materials |
42 | ″ | ″ | matrix alloy |
43 | ″ | ″ | measurements |
44 | ″ | ″ | measurements of density |
45 | ″ | ″ | mechanical properties |
46 | ″ | ″ | mechanical propertiesMechanical properties |
47 | ″ | ″ | melt |
48 | ″ | ″ | nano particles |
49 | ″ | ″ | nano-Al2O3 |
50 | ″ | ″ | nanocomposites |
51 | ″ | ″ | nanoparticles |
52 | ″ | ″ | one |
53 | ″ | ″ | oxide |
54 | ″ | ″ | paper |
55 | ″ | ″ | particles |
56 | ″ | ″ | percentage |
57 | ″ | ″ | plasticity |
58 | ″ | ″ | porosity |
59 | ″ | ″ | presence |
60 | ″ | ″ | presence of particles |
61 | ″ | ″ | properties |
62 | ″ | ″ | refining |
63 | ″ | ″ | small amount |
64 | ″ | ″ | strength |
65 | ″ | ″ | structureStructure |
66 | ″ | ″ | studied alloys |
67 | ″ | ″ | study |
68 | ″ | ″ | tensile strength |
69 | ″ | ″ | theoretical ones |
70 | ″ | ″ | treatment |
71 | ″ | ″ | treatment contributes |
72 | ″ | ″ | ultrasonic treatment |
73 | ″ | ″ | values |
74 | ″ | ″ | wt |
75 | ″ | ″ | yield strength |
76 | ″ | schema:name | Impact of Dispersion Hardening by Alumina Nano Particles on Mechanical Properties of Al 1100 |
77 | ″ | schema:pagination | 465-470 |
78 | ″ | schema:productId | N3a47a58877654c8498980f6dfdc03c11 |
79 | ″ | ″ | Nad992bffc234427db830d11df613687a |
80 | ″ | schema:publisher | Na42464c294b843c386cba2676a2f032f |
81 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1124345293 |
82 | ″ | ″ | https://doi.org/10.1007/978-3-030-36408-3_66 |
83 | ″ | schema:sdDatePublished | 2022-05-20T07:49 |
84 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
85 | ″ | schema:sdPublisher | N8a05e346d6ec4dd4ac656fd22088c2f1 |
86 | ″ | schema:url | https://doi.org/10.1007/978-3-030-36408-3_66 |
87 | ″ | sgo:license | sg:explorer/license/ |
88 | ″ | sgo:sdDataset | chapters |
89 | ″ | rdf:type | schema:Chapter |
90 | N1c19d8e091b24692a1bf3f948a5dbf3e | rdf:first | sg:person.015565057335.53 |
91 | ″ | rdf:rest | N4ddfdb00ec414118b328d588e606fa8d |
92 | N3a47a58877654c8498980f6dfdc03c11 | schema:name | doi |
93 | ″ | schema:value | 10.1007/978-3-030-36408-3_66 |
94 | ″ | rdf:type | schema:PropertyValue |
95 | N44ec29a8977a4b4594476b4fe423390e | rdf:first | sg:person.012340217062.33 |
96 | ″ | rdf:rest | rdf:nil |
97 | N4ddfdb00ec414118b328d588e606fa8d | rdf:first | sg:person.013113265001.90 |
98 | ″ | rdf:rest | Nae0163aefdcc49d782cad2e4b50b4f38 |
99 | N7526acd7054044218fa08d3817fba003 | schema:familyName | Tomsett |
100 | ″ | schema:givenName | Alan |
101 | ″ | rdf:type | schema:Person |
102 | N8a05e346d6ec4dd4ac656fd22088c2f1 | schema:name | Springer Nature - SN SciGraph project |
103 | ″ | rdf:type | schema:Organization |
104 | N910df55b85f0423ea1831b7a369d34b3 | rdf:first | sg:person.0771536125.70 |
105 | ″ | rdf:rest | N44ec29a8977a4b4594476b4fe423390e |
106 | Na1f04d3c896b4b5e8fc21dfbbc506df9 | schema:isbn | 978-3-030-36407-6 |
107 | ″ | ″ | 978-3-030-36408-3 |
108 | ″ | schema:name | Light Metals 2020 |
109 | ″ | rdf:type | schema:Book |
110 | Na42464c294b843c386cba2676a2f032f | schema:name | Springer Nature |
111 | ″ | rdf:type | schema:Organisation |
112 | Nad992bffc234427db830d11df613687a | schema:name | dimensions_id |
113 | ″ | schema:value | pub.1124345293 |
114 | ″ | rdf:type | schema:PropertyValue |
115 | Nae0163aefdcc49d782cad2e4b50b4f38 | rdf:first | sg:person.016507654151.16 |
116 | ″ | rdf:rest | N910df55b85f0423ea1831b7a369d34b3 |
117 | Neda687b433914b778c4e332a1a2f5394 | rdf:first | sg:person.07644463311.12 |
118 | ″ | rdf:rest | N1c19d8e091b24692a1bf3f948a5dbf3e |
119 | Nff6a76ef1cca40d0a943fbbb3f25ff13 | rdf:first | N7526acd7054044218fa08d3817fba003 |
120 | ″ | rdf:rest | rdf:nil |
121 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Chemical Sciences |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
125 | ″ | schema:name | Physical Chemistry (incl. Structural) |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
128 | ″ | schema:name | Engineering |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
131 | ″ | schema:name | Materials Engineering |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | sg:person.012340217062.33 | schema:affiliation | grid-institutes:grid.77602.34 |
134 | ″ | schema:familyName | Lychagin |
135 | ″ | schema:givenName | Dmitry |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012340217062.33 |
137 | ″ | rdf:type | schema:Person |
138 | sg:person.013113265001.90 | schema:affiliation | grid-institutes:grid.467103.7 |
139 | ″ | schema:familyName | Khrustalev |
140 | ″ | schema:givenName | Anton |
141 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113265001.90 |
142 | ″ | rdf:type | schema:Person |
143 | sg:person.015565057335.53 | schema:affiliation | grid-institutes:grid.77602.34 |
144 | ″ | schema:familyName | Kozulin |
145 | ″ | schema:givenName | Alexander |
146 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015565057335.53 |
147 | ″ | rdf:type | schema:Person |
148 | sg:person.016507654151.16 | schema:affiliation | grid-institutes:grid.467103.7 |
149 | ″ | schema:familyName | Moskvichev |
150 | ″ | schema:givenName | Evgeny |
151 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016507654151.16 |
152 | ″ | rdf:type | schema:Person |
153 | sg:person.07644463311.12 | schema:affiliation | grid-institutes:grid.77602.34 |
154 | ″ | schema:familyName | Zhukov |
155 | ″ | schema:givenName | Ilya |
156 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07644463311.12 |
157 | ″ | rdf:type | schema:Person |
158 | sg:person.0771536125.70 | schema:affiliation | grid-institutes:grid.77602.34 |
159 | ″ | schema:familyName | Vorozhtsov |
160 | ″ | schema:givenName | Alexander |
161 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70 |
162 | ″ | rdf:type | schema:Person |
163 | grid-institutes:grid.467103.7 | schema:alternateName | Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Akademicheskiy 2/4 Av, 634055, Tomsk, Russian Federation |
164 | ″ | schema:name | Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Akademicheskiy 2/4 Av, 634055, Tomsk, Russian Federation |
165 | ″ | ″ | National Research Tomsk State University Tomsk, 634050, Tomsk, Russian Federation |
166 | ″ | rdf:type | schema:Organization |
167 | grid-institutes:grid.77602.34 | schema:alternateName | National Research Tomsk State University Tomsk, 634050, Tomsk, Russian Federation |
168 | ″ | schema:name | National Research Tomsk State University Tomsk, 634050, Tomsk, Russian Federation |
169 | ″ | rdf:type | schema:Organization |