A Quality Metric for Visualization of Clusters in Graphs View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2019-11-28

AUTHORS

Amyra Meidiana , Seok-Hee Hong , Peter Eades , Daniel Keim

ABSTRACT

Traditionally, graph quality metrics focus on readability, but recent studies show the need for metrics which are more specific to the discovery of patterns in graphs. Cluster analysis is a popular task within graph analysis, yet there is no metric yet explicitly quantifying how well a drawing of a graph represents its cluster structure.We define a clustering quality metric measuring how well a node-link drawing of a graph represents the clusters contained in the graph. Experiments with deforming graph drawings verify that our metric effectively captures variations in the visual cluster quality of graph drawings. We then use our metric to examine how well different graph drawing algorithms visualize cluster structures in various graphs; the results confirm that some algorithms which have been specifically designed to show cluster structures perform better than other algorithms. More... »

PAGES

125-138

Book

TITLE

Graph Drawing and Network Visualization

ISBN

978-3-030-35801-3
978-3-030-35802-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-35802-0_10

DOI

http://dx.doi.org/10.1007/978-3-030-35802-0_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1122941881


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Sydney, Sydney, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "University of Sydney, Sydney, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meidiana", 
        "givenName": "Amyra", 
        "id": "sg:person.011522354067.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522354067.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sydney, Sydney, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "University of Sydney, Sydney, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hong", 
        "givenName": "Seok-Hee", 
        "id": "sg:person.016327260572.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016327260572.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sydney, Sydney, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "University of Sydney, Sydney, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eades", 
        "givenName": "Peter", 
        "id": "sg:person.01314347503.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314347503.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keim", 
        "givenName": "Daniel", 
        "id": "sg:person.0635776571.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-11-28", 
    "datePublishedReg": "2019-11-28", 
    "description": "Traditionally, graph quality metrics focus on readability, but recent studies show the need for metrics which are more specific to the discovery of patterns in graphs. Cluster analysis is a popular task within graph analysis, yet there is no metric yet explicitly quantifying how well a drawing of a graph represents its cluster structure.We define a clustering quality metric measuring how well a node-link drawing of a graph represents the clusters contained in the graph. Experiments with deforming graph drawings verify that our metric effectively captures variations in the visual cluster quality of graph drawings. We then use our metric to examine how well different graph drawing algorithms visualize cluster structures in various graphs; the results confirm that some algorithms which have been specifically designed to show cluster structures perform better than other algorithms.", 
    "editor": [
      {
        "familyName": "Archambault", 
        "givenName": "Daniel", 
        "type": "Person"
      }, 
      {
        "familyName": "T\u00f3th", 
        "givenName": "Csaba D.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-35802-0_10", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-030-35801-3", 
        "978-3-030-35802-0"
      ], 
      "name": "Graph Drawing and Network Visualization", 
      "type": "Book"
    }, 
    "keywords": [
      "graph drawing", 
      "cluster structure", 
      "graph", 
      "visualization of clusters", 
      "graph analysis", 
      "cluster quality", 
      "algorithm", 
      "metrics", 
      "discovery of patterns", 
      "structure", 
      "clusters", 
      "quality metrics", 
      "cluster analysis", 
      "analysis", 
      "experiments", 
      "results", 
      "popular task", 
      "drawings", 
      "variation", 
      "task", 
      "visualization", 
      "discovery", 
      "quality", 
      "patterns", 
      "study", 
      "Recent studies", 
      "need", 
      "readability"
    ], 
    "name": "A Quality Metric for Visualization of Clusters in Graphs", 
    "pagination": "125-138", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1122941881"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-35802-0_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-35802-0_10", 
      "https://app.dimensions.ai/details/publication/pub.1122941881"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_233.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-35802-0_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-35802-0_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-35802-0_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-35802-0_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-35802-0_10'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      22 PREDICATES      52 URIs      45 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-35802-0_10 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Ndb636465217642b3a2b820787b6f6c79
4 schema:datePublished 2019-11-28
5 schema:datePublishedReg 2019-11-28
6 schema:description Traditionally, graph quality metrics focus on readability, but recent studies show the need for metrics which are more specific to the discovery of patterns in graphs. Cluster analysis is a popular task within graph analysis, yet there is no metric yet explicitly quantifying how well a drawing of a graph represents its cluster structure.We define a clustering quality metric measuring how well a node-link drawing of a graph represents the clusters contained in the graph. Experiments with deforming graph drawings verify that our metric effectively captures variations in the visual cluster quality of graph drawings. We then use our metric to examine how well different graph drawing algorithms visualize cluster structures in various graphs; the results confirm that some algorithms which have been specifically designed to show cluster structures perform better than other algorithms.
7 schema:editor N8d0fe28edccc40b7939ce556fca22fed
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N76ff0ffb08014b92b7892f32f7afae83
11 schema:keywords Recent studies
12 algorithm
13 analysis
14 cluster analysis
15 cluster quality
16 cluster structure
17 clusters
18 discovery
19 discovery of patterns
20 drawings
21 experiments
22 graph
23 graph analysis
24 graph drawing
25 metrics
26 need
27 patterns
28 popular task
29 quality
30 quality metrics
31 readability
32 results
33 structure
34 study
35 task
36 variation
37 visualization
38 visualization of clusters
39 schema:name A Quality Metric for Visualization of Clusters in Graphs
40 schema:pagination 125-138
41 schema:productId N4336679587c04a02ac608f2729940e35
42 N49638db011f44c28b7626d0cd21df572
43 schema:publisher N15106ddd019e44b99e28195aa27d2ba4
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122941881
45 https://doi.org/10.1007/978-3-030-35802-0_10
46 schema:sdDatePublished 2022-10-01T06:54
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N8c2ab246bea14dabb966a46fc5439fa0
49 schema:url https://doi.org/10.1007/978-3-030-35802-0_10
50 sgo:license sg:explorer/license/
51 sgo:sdDataset chapters
52 rdf:type schema:Chapter
53 N13c18e81ac97489fa792c754c09cdf16 schema:familyName Tóth
54 schema:givenName Csaba D.
55 rdf:type schema:Person
56 N15106ddd019e44b99e28195aa27d2ba4 schema:name Springer Nature
57 rdf:type schema:Organisation
58 N3acc97f5313b4aff9fcfa1b8cf6b5eb6 rdf:first N13c18e81ac97489fa792c754c09cdf16
59 rdf:rest rdf:nil
60 N4336679587c04a02ac608f2729940e35 schema:name doi
61 schema:value 10.1007/978-3-030-35802-0_10
62 rdf:type schema:PropertyValue
63 N49638db011f44c28b7626d0cd21df572 schema:name dimensions_id
64 schema:value pub.1122941881
65 rdf:type schema:PropertyValue
66 N67cbd0e9ad2f4609a3d097d95e0a433d rdf:first sg:person.016327260572.37
67 rdf:rest N8db5d57473cd48798f5e87777cd982d8
68 N6a22d75e10114504b2cc000b766d03b1 schema:familyName Archambault
69 schema:givenName Daniel
70 rdf:type schema:Person
71 N6df0cc75f0b2454cba803973f6036080 rdf:first sg:person.0635776571.01
72 rdf:rest rdf:nil
73 N76ff0ffb08014b92b7892f32f7afae83 schema:isbn 978-3-030-35801-3
74 978-3-030-35802-0
75 schema:name Graph Drawing and Network Visualization
76 rdf:type schema:Book
77 N8c2ab246bea14dabb966a46fc5439fa0 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N8d0fe28edccc40b7939ce556fca22fed rdf:first N6a22d75e10114504b2cc000b766d03b1
80 rdf:rest N3acc97f5313b4aff9fcfa1b8cf6b5eb6
81 N8db5d57473cd48798f5e87777cd982d8 rdf:first sg:person.01314347503.31
82 rdf:rest N6df0cc75f0b2454cba803973f6036080
83 Ndb636465217642b3a2b820787b6f6c79 rdf:first sg:person.011522354067.89
84 rdf:rest N67cbd0e9ad2f4609a3d097d95e0a433d
85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
86 schema:name Information and Computing Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
89 schema:name Information Systems
90 rdf:type schema:DefinedTerm
91 sg:person.011522354067.89 schema:affiliation grid-institutes:grid.1013.3
92 schema:familyName Meidiana
93 schema:givenName Amyra
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522354067.89
95 rdf:type schema:Person
96 sg:person.01314347503.31 schema:affiliation grid-institutes:grid.1013.3
97 schema:familyName Eades
98 schema:givenName Peter
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314347503.31
100 rdf:type schema:Person
101 sg:person.016327260572.37 schema:affiliation grid-institutes:grid.1013.3
102 schema:familyName Hong
103 schema:givenName Seok-Hee
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016327260572.37
105 rdf:type schema:Person
106 sg:person.0635776571.01 schema:affiliation grid-institutes:grid.9811.1
107 schema:familyName Keim
108 schema:givenName Daniel
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01
110 rdf:type schema:Person
111 grid-institutes:grid.1013.3 schema:alternateName University of Sydney, Sydney, Australia
112 schema:name University of Sydney, Sydney, Australia
113 rdf:type schema:Organization
114 grid-institutes:grid.9811.1 schema:alternateName University of Konstanz, Konstanz, Germany
115 schema:name University of Konstanz, Konstanz, Germany
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...