Quantum Attacks Without Superposition Queries: The Offline Simon’s Algorithm View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2019-11-25

AUTHORS

Xavier Bonnetain , Akinori Hosoyamada , María Naya-Plasencia , Yu Sasaki , André Schrottenloher

ABSTRACT

In symmetric cryptanalysis, the model of superposition queries has led to surprising results, with many constructions being broken in polynomial time thanks to Simon’s period-finding algorithm. But the practical implications of these attacks remain blurry. In contrast, the results obtained so far for a quantum adversary making classical queries only are less impressive.In this paper, we introduce a new quantum algorithm which uses Simon’s subroutines in a novel way. We manage to leverage the algebraic structure of cryptosystems in the context of a quantum attacker limited to classical queries and offline quantum computations. We obtain improved quantum-time/classical-data tradeoffs with respect to the current literature, while using only as much hardware requirements (quantum and classical) as a standard exhaustive search with Grover’s algorithm. In particular, we are able to break the Even-Mansour construction in quantum time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{O}(2^{n/3})$$\end{document}, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(2^{n/3})$$\end{document} classical queries and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2)$$\end{document} qubits only. In addition, we improve some previous superposition attacks by reducing the data complexity from exponential to polynomial, with the same time complexity.Our approach can be seen in two complementary ways: reusing superposition queries during the iteration of a search using Grover’s algorithm, or alternatively, removing the memory requirement in some quantum attacks based on a collision search, thanks to their algebraic structure.We provide a list of cryptographic applications, including the Even-Mansour construction, the FX construction, some Sponge authenticated modes of encryption, and many more. More... »

PAGES

552-583

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-34578-5_20

DOI

http://dx.doi.org/10.1007/978-3-030-34578-5_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1122857128


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Coll\u00e8ge Doctoral, Sorbonne Universit\u00e9, 75005, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Inria, Paris, France", 
            "Coll\u00e8ge Doctoral, Sorbonne Universit\u00e9, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonnetain", 
        "givenName": "Xavier", 
        "id": "sg:person.07625700740.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07625700740.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University, Nagoya, Japan", 
          "id": "http://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "NTT Secure Platform Laboratories, Tokyo, Japan", 
            "Nagoya University, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hosoyamada", 
        "givenName": "Akinori", 
        "id": "sg:person.011327732575.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011327732575.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Inria, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.5328.c", 
          "name": [
            "Inria, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naya-Plasencia", 
        "givenName": "Mar\u00eda", 
        "id": "sg:person.013206304341.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013206304341.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NTT Secure Platform Laboratories, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.419819.c", 
          "name": [
            "NTT Secure Platform Laboratories, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sasaki", 
        "givenName": "Yu", 
        "id": "sg:person.014072424160.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014072424160.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Inria, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.5328.c", 
          "name": [
            "Inria, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schrottenloher", 
        "givenName": "Andr\u00e9", 
        "id": "sg:person.07436415541.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07436415541.40"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-11-25", 
    "datePublishedReg": "2019-11-25", 
    "description": "Abstract\nIn symmetric cryptanalysis, the model of superposition queries has led to surprising results, with many constructions being broken in polynomial time thanks to Simon\u2019s period-finding algorithm. But the practical implications of these attacks remain blurry. In contrast, the results obtained so far for a quantum adversary making classical queries only are less impressive.In this paper, we introduce a new quantum algorithm which uses Simon\u2019s subroutines in a novel way. We manage to leverage the algebraic structure of cryptosystems in the context of a quantum attacker limited to classical queries and offline quantum computations. We obtain improved quantum-time/classical-data tradeoffs with respect to the current literature, while using only as much hardware requirements (quantum and classical) as a standard exhaustive search with Grover\u2019s algorithm. In particular, we are able to break the Even-Mansour construction in quantum time \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tilde{O}(2^{n/3})$$\\end{document}, with \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$O(2^{n/3})$$\\end{document} classical queries and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$O(n^2)$$\\end{document} qubits only. In addition, we improve some previous superposition attacks by reducing the data complexity from exponential to polynomial, with the same time complexity.Our approach can be seen in two complementary ways: reusing superposition queries during the iteration of a search using Grover\u2019s algorithm, or alternatively, removing the memory requirement in some quantum attacks based on a collision search, thanks to their algebraic structure.We provide a list of cryptographic applications, including the Even-Mansour construction, the FX construction, some Sponge authenticated modes of encryption, and many more.", 
    "editor": [
      {
        "familyName": "Galbraith", 
        "givenName": "Steven D.", 
        "type": "Person"
      }, 
      {
        "familyName": "Moriai", 
        "givenName": "Shiho", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-34578-5_20", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-030-34577-8", 
        "978-3-030-34578-5"
      ], 
      "name": "Advances in Cryptology \u2013 ASIACRYPT 2019", 
      "type": "Book"
    }, 
    "keywords": [
      "superposition queries", 
      "classical queries", 
      "quantum attacks", 
      "Even-Mansour construction", 
      "Grover\u2019s algorithm", 
      "modes of encryption", 
      "polynomial time thanks", 
      "same time complexity", 
      "new quantum algorithms", 
      "symmetric cryptanalysis", 
      "superposition attacks", 
      "collision search", 
      "queries", 
      "data complexity", 
      "time complexity", 
      "cryptographic applications", 
      "quantum attackers", 
      "memory requirements", 
      "hardware requirements", 
      "Simon\u2019s algorithm", 
      "exhaustive search", 
      "quantum algorithms", 
      "quantum adversaries", 
      "algorithm", 
      "FX construction", 
      "attacks", 
      "algebraic structure", 
      "time thanks", 
      "quantum computation", 
      "novel way", 
      "complexity", 
      "encryption", 
      "attacker", 
      "cryptosystem", 
      "search", 
      "requirements", 
      "adversary", 
      "subroutine", 
      "cryptanalysis", 
      "complementary way", 
      "computation", 
      "quantum time", 
      "thanks", 
      "tradeoff", 
      "iteration", 
      "way", 
      "construction", 
      "applications", 
      "Practical implications", 
      "surprising result", 
      "list", 
      "context", 
      "model", 
      "results", 
      "time", 
      "structure", 
      "respect", 
      "current literature", 
      "literature", 
      "mode", 
      "addition", 
      "implications", 
      "contrast", 
      "paper", 
      "approach", 
      "sponges"
    ], 
    "name": "Quantum Attacks Without Superposition Queries: The Offline Simon\u2019s Algorithm", 
    "pagination": "552-583", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1122857128"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-34578-5_20"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-34578-5_20", 
      "https://app.dimensions.ai/details/publication/pub.1122857128"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_165.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-34578-5_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-34578-5_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-34578-5_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-34578-5_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-34578-5_20'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      22 PREDICATES      91 URIs      83 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-34578-5_20 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 anzsrc-for:0804
4 schema:author N70cd1c0da9364ce0b6b5bb583a3c4b25
5 schema:datePublished 2019-11-25
6 schema:datePublishedReg 2019-11-25
7 schema:description Abstract In symmetric cryptanalysis, the model of superposition queries has led to surprising results, with many constructions being broken in polynomial time thanks to Simon’s period-finding algorithm. But the practical implications of these attacks remain blurry. In contrast, the results obtained so far for a quantum adversary making classical queries only are less impressive.In this paper, we introduce a new quantum algorithm which uses Simon’s subroutines in a novel way. We manage to leverage the algebraic structure of cryptosystems in the context of a quantum attacker limited to classical queries and offline quantum computations. We obtain improved quantum-time/classical-data tradeoffs with respect to the current literature, while using only as much hardware requirements (quantum and classical) as a standard exhaustive search with Grover’s algorithm. In particular, we are able to break the Even-Mansour construction in quantum time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{O}(2^{n/3})$$\end{document}, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(2^{n/3})$$\end{document} classical queries and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2)$$\end{document} qubits only. In addition, we improve some previous superposition attacks by reducing the data complexity from exponential to polynomial, with the same time complexity.Our approach can be seen in two complementary ways: reusing superposition queries during the iteration of a search using Grover’s algorithm, or alternatively, removing the memory requirement in some quantum attacks based on a collision search, thanks to their algebraic structure.We provide a list of cryptographic applications, including the Even-Mansour construction, the FX construction, some Sponge authenticated modes of encryption, and many more.
8 schema:editor N6e6d3ea91ea9467bbb74c67c6cd32347
9 schema:genre chapter
10 schema:isAccessibleForFree true
11 schema:isPartOf Nab8d743a585c450f89e5cc41fdac1042
12 schema:keywords Even-Mansour construction
13 FX construction
14 Grover’s algorithm
15 Practical implications
16 Simon’s algorithm
17 addition
18 adversary
19 algebraic structure
20 algorithm
21 applications
22 approach
23 attacker
24 attacks
25 classical queries
26 collision search
27 complementary way
28 complexity
29 computation
30 construction
31 context
32 contrast
33 cryptanalysis
34 cryptographic applications
35 cryptosystem
36 current literature
37 data complexity
38 encryption
39 exhaustive search
40 hardware requirements
41 implications
42 iteration
43 list
44 literature
45 memory requirements
46 mode
47 model
48 modes of encryption
49 new quantum algorithms
50 novel way
51 paper
52 polynomial time thanks
53 quantum adversaries
54 quantum algorithms
55 quantum attackers
56 quantum attacks
57 quantum computation
58 quantum time
59 queries
60 requirements
61 respect
62 results
63 same time complexity
64 search
65 sponges
66 structure
67 subroutine
68 superposition attacks
69 superposition queries
70 surprising result
71 symmetric cryptanalysis
72 thanks
73 time
74 time complexity
75 time thanks
76 tradeoff
77 way
78 schema:name Quantum Attacks Without Superposition Queries: The Offline Simon’s Algorithm
79 schema:pagination 552-583
80 schema:productId N6a47c3d8434248958e3349a1c567d36f
81 N88f6a585bd944c8483976b602e4920ad
82 schema:publisher N0d8359b44bb94ed9a941c8819611657a
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122857128
84 https://doi.org/10.1007/978-3-030-34578-5_20
85 schema:sdDatePublished 2022-09-02T16:11
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher Nf4e6121a2b7b4540aebfc781f45b4418
88 schema:url https://doi.org/10.1007/978-3-030-34578-5_20
89 sgo:license sg:explorer/license/
90 sgo:sdDataset chapters
91 rdf:type schema:Chapter
92 N0d8359b44bb94ed9a941c8819611657a schema:name Springer Nature
93 rdf:type schema:Organisation
94 N1d8662c44a1743daa5c7b280dfeabcec rdf:first sg:person.014072424160.79
95 rdf:rest N9c7ea51980e24784a0e0df860f9be9e6
96 N3b8b11816dff4cb4ad4038e391fcd8d0 rdf:first sg:person.013206304341.94
97 rdf:rest N1d8662c44a1743daa5c7b280dfeabcec
98 N4dada5bfc71d45b0bd705281fe06358f rdf:first N6fd314d55a9b45c7a9e731324b86a154
99 rdf:rest rdf:nil
100 N6a47c3d8434248958e3349a1c567d36f schema:name dimensions_id
101 schema:value pub.1122857128
102 rdf:type schema:PropertyValue
103 N6e6d3ea91ea9467bbb74c67c6cd32347 rdf:first Nc67dcd38974f49d9ab013f3e31162acf
104 rdf:rest N4dada5bfc71d45b0bd705281fe06358f
105 N6fd314d55a9b45c7a9e731324b86a154 schema:familyName Moriai
106 schema:givenName Shiho
107 rdf:type schema:Person
108 N70cd1c0da9364ce0b6b5bb583a3c4b25 rdf:first sg:person.07625700740.58
109 rdf:rest N73918556d12f4b63be5f4da188461ac2
110 N73918556d12f4b63be5f4da188461ac2 rdf:first sg:person.011327732575.72
111 rdf:rest N3b8b11816dff4cb4ad4038e391fcd8d0
112 N88f6a585bd944c8483976b602e4920ad schema:name doi
113 schema:value 10.1007/978-3-030-34578-5_20
114 rdf:type schema:PropertyValue
115 N9c7ea51980e24784a0e0df860f9be9e6 rdf:first sg:person.07436415541.40
116 rdf:rest rdf:nil
117 Nab8d743a585c450f89e5cc41fdac1042 schema:isbn 978-3-030-34577-8
118 978-3-030-34578-5
119 schema:name Advances in Cryptology – ASIACRYPT 2019
120 rdf:type schema:Book
121 Nc67dcd38974f49d9ab013f3e31162acf schema:familyName Galbraith
122 schema:givenName Steven D.
123 rdf:type schema:Person
124 Nf4e6121a2b7b4540aebfc781f45b4418 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
127 schema:name Information and Computing Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
130 schema:name Computation Theory and Mathematics
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
133 schema:name Data Format
134 rdf:type schema:DefinedTerm
135 sg:person.011327732575.72 schema:affiliation grid-institutes:grid.27476.30
136 schema:familyName Hosoyamada
137 schema:givenName Akinori
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011327732575.72
139 rdf:type schema:Person
140 sg:person.013206304341.94 schema:affiliation grid-institutes:grid.5328.c
141 schema:familyName Naya-Plasencia
142 schema:givenName María
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013206304341.94
144 rdf:type schema:Person
145 sg:person.014072424160.79 schema:affiliation grid-institutes:grid.419819.c
146 schema:familyName Sasaki
147 schema:givenName Yu
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014072424160.79
149 rdf:type schema:Person
150 sg:person.07436415541.40 schema:affiliation grid-institutes:grid.5328.c
151 schema:familyName Schrottenloher
152 schema:givenName André
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07436415541.40
154 rdf:type schema:Person
155 sg:person.07625700740.58 schema:affiliation grid-institutes:grid.462844.8
156 schema:familyName Bonnetain
157 schema:givenName Xavier
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07625700740.58
159 rdf:type schema:Person
160 grid-institutes:grid.27476.30 schema:alternateName Nagoya University, Nagoya, Japan
161 schema:name NTT Secure Platform Laboratories, Tokyo, Japan
162 Nagoya University, Nagoya, Japan
163 rdf:type schema:Organization
164 grid-institutes:grid.419819.c schema:alternateName NTT Secure Platform Laboratories, Tokyo, Japan
165 schema:name NTT Secure Platform Laboratories, Tokyo, Japan
166 rdf:type schema:Organization
167 grid-institutes:grid.462844.8 schema:alternateName Collège Doctoral, Sorbonne Université, 75005, Paris, France
168 schema:name Collège Doctoral, Sorbonne Université, 75005, Paris, France
169 Inria, Paris, France
170 rdf:type schema:Organization
171 grid-institutes:grid.5328.c schema:alternateName Inria, Paris, France
172 schema:name Inria, Paris, France
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...