Ontology type: schema:Chapter Open Access: True
2019-10-23
AUTHORSLun Wang , Joseph P. Near , Neel Somani , Peng Gao , Andrew Low , David Dao , Dawn Song
ABSTRACTThe increasing pace of data collection has led to increasing awareness of privacy risks, resulting in new data privacy regulations like General data Protection Regulation (GDPR). Such regulations are an important step, but automatic compliance checking is challenging. In this work, we present a new paradigm, Data Capsule, for automatic compliance checking of data privacy regulations in heterogeneous data processing infrastructures. Our key insight is to pair up a data subject’s data with a policy governing how the data is processed. Specified in our formal policy language: PrivPolicy, the policy is created and provided by the data subject alongside the data, and is associated with the data throughout the life-cycle of data processing (e.g., data transformation by data processing systems, data aggregation of multiple data subjects’ data). We introduce a solution for static enforcement of privacy policies based on the concept of residual policies, and present a novel algorithm based on abstract interpretation for deriving residual policies in PrivPolicy. Our solution ensures compliance automatically, and is designed for deployment alongside existing infrastructure. We also design and develop PrivGuard, a reference data capsule manager that implements all the functionalities of Data Capsule paradigm . More... »
PAGES3-23
Heterogeneous Data Management, Polystores, and Analytics for Healthcare
ISBN
978-3-030-33751-3
978-3-030-33752-0
http://scigraph.springernature.com/pub.10.1007/978-3-030-33752-0_1
DOIhttp://dx.doi.org/10.1007/978-3-030-33752-0_1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1122094426
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of California, Berkeley, USA",
"id": "http://www.grid.ac/institutes/grid.47840.3f",
"name": [
"University of California, Berkeley, USA"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Lun",
"id": "sg:person.016553377155.60",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016553377155.60"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Vermont, Burlington, USA",
"id": "http://www.grid.ac/institutes/grid.59062.38",
"name": [
"University of Vermont, Burlington, USA"
],
"type": "Organization"
},
"familyName": "Near",
"givenName": "Joseph P.",
"id": "sg:person.010147043545.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147043545.53"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of California, Berkeley, USA",
"id": "http://www.grid.ac/institutes/grid.47840.3f",
"name": [
"University of California, Berkeley, USA"
],
"type": "Organization"
},
"familyName": "Somani",
"givenName": "Neel",
"id": "sg:person.010744424145.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010744424145.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of California, Berkeley, USA",
"id": "http://www.grid.ac/institutes/grid.47840.3f",
"name": [
"University of California, Berkeley, USA"
],
"type": "Organization"
},
"familyName": "Gao",
"givenName": "Peng",
"id": "sg:person.011542004545.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011542004545.22"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of California, Berkeley, USA",
"id": "http://www.grid.ac/institutes/grid.47840.3f",
"name": [
"University of California, Berkeley, USA"
],
"type": "Organization"
},
"familyName": "Low",
"givenName": "Andrew",
"type": "Person"
},
{
"affiliation": {
"alternateName": "ETH Zurich, Zurich, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5801.c",
"name": [
"ETH Zurich, Zurich, Switzerland"
],
"type": "Organization"
},
"familyName": "Dao",
"givenName": "David",
"id": "sg:person.013134745545.81",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013134745545.81"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of California, Berkeley, USA",
"id": "http://www.grid.ac/institutes/grid.47840.3f",
"name": [
"University of California, Berkeley, USA"
],
"type": "Organization"
},
"familyName": "Song",
"givenName": "Dawn",
"id": "sg:person.01143152610.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143152610.86"
],
"type": "Person"
}
],
"datePublished": "2019-10-23",
"datePublishedReg": "2019-10-23",
"description": "The increasing pace of data collection has led to increasing awareness of privacy risks, resulting in new data privacy regulations like General data Protection Regulation (GDPR). Such regulations are an important step, but automatic compliance checking is challenging. In this work, we present a new paradigm, Data Capsule, for automatic compliance checking of data privacy regulations in heterogeneous data processing infrastructures. Our key insight is to pair up a data subject\u2019s data with a policy governing how the data is processed. Specified in our formal policy language: PrivPolicy, the policy is created and provided by the data subject alongside the data, and is associated with the data throughout the life-cycle of data processing (e.g., data transformation by data processing systems, data aggregation of multiple data subjects\u2019 data). We introduce a solution for static enforcement of privacy policies based on the concept of residual policies, and present a novel algorithm based on abstract interpretation for deriving residual policies in PrivPolicy. Our solution ensures compliance automatically, and is designed for deployment alongside existing infrastructure. We also design and develop PrivGuard, a reference data capsule manager that implements all the functionalities of Data Capsule paradigm\n.",
"editor": [
{
"familyName": "Gadepally",
"givenName": "Vijay",
"type": "Person"
},
{
"familyName": "Mattson",
"givenName": "Timothy",
"type": "Person"
},
{
"familyName": "Stonebraker",
"givenName": "Michael",
"type": "Person"
},
{
"familyName": "Wang",
"givenName": "Fusheng",
"type": "Person"
},
{
"familyName": "Luo",
"givenName": "Gang",
"type": "Person"
},
{
"familyName": "Laing",
"givenName": "Yanhui",
"type": "Person"
},
{
"familyName": "Dubovitskaya",
"givenName": "Alevtina",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-33752-0_1",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-030-33751-3",
"978-3-030-33752-0"
],
"name": "Heterogeneous Data Management, Polystores, and Analytics for Healthcare",
"type": "Book"
},
"keywords": [
"data privacy regulations",
"General Data Protection Regulation",
"privacy regulations",
"automatic compliance",
"automatic compliance checking",
"data processing infrastructure",
"formal policy language",
"Data Protection Regulation",
"new paradigm",
"compliance checking",
"privacy risks",
"privacy policies",
"data capsules",
"residual policy",
"processing infrastructure",
"policy language",
"data subjects",
"static enforcement",
"abstract interpretation",
"novel algorithm",
"data processing",
"Protection Regulation",
"infrastructure",
"paradigm",
"data collection",
"key insights",
"subject data",
"checking",
"important step",
"deployment",
"algorithm",
"language",
"functionality",
"data",
"processing",
"solution",
"collection",
"concept",
"pace",
"work",
"managers",
"enforcement",
"step",
"policy",
"compliance",
"awareness",
"insights",
"interpretation",
"subjects",
"risk",
"such regulation",
"regulation",
"capsule"
],
"name": "Data Capsule: A New Paradigm for Automatic Compliance with Data Privacy Regulations",
"pagination": "3-23",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1122094426"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-33752-0_1"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-33752-0_1",
"https://app.dimensions.ai/details/publication/pub.1122094426"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:47",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_398.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-33752-0_1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-33752-0_1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-33752-0_1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-33752-0_1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-33752-0_1'
This table displays all metadata directly associated to this object as RDF triples.
190 TRIPLES
23 PREDICATES
78 URIs
71 LITERALS
7 BLANK NODES