XiangyaDerm: A Clinical Image Dataset of Asian Race for Skin Disease Aided Diagnosis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-10-24

AUTHORS

Bin Xie , Xiaoyu He , Shuang Zhao , Yi Li , Juan Su , Xinyu Zhao , Yehong Kuang , Yong Wang , Xiang Chen

ABSTRACT

Skin disease is a quite common disease of human beings, which has been found in all races and ages. It seriously affects people’s quality of life or even endangers people’s lives. In this paper, we propose a large-scale, Asian-dominated dataset of skin diseases with bounding box labels, namely XiangyaDerm. It contains 107,565 clinical images, covering 541 types of skin diseases. Each image in this dataset is labeled by professional doctors. As far as we know, this dataset is the largest clinical image dataset of Asian skin diseases used in Computer Aided Diagnosis (CAD) system worldwide. We compare the classification results of several advanced Convolutional Neural Networks (CNNs) on this dataset. InceptionResNetV2 is the best one for 80 skin disease classification whose Top-1 and Top-3 accuracies can reach 0.588 and 0.764, which proves the usefulness of the proposed benchmark dataset, and gives the baseline performance on it. The cross-test experiment with Derm101 shows us that the CNN model has a very different test effect on different ethnic datasets. Therefore, to build a skin disease CAD system with high performance and stability, we recommend to establish a specific dataset of skin diseases for different regions and races. More... »

PAGES

22-31

Book

TITLE

Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention

ISBN

978-3-030-33641-7
978-3-030-33642-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-33642-4_3

DOI

http://dx.doi.org/10.1007/978-3-030-33642-4_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1122752072


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mobile Health Ministry of Education - China Mobile Joint Laboratory, Central South University, Changsha, China", 
          "id": "http://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Automation, Central South University, Changsha, China", 
            "Mobile Health Ministry of Education - China Mobile Joint Laboratory, Central South University, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Bin", 
        "id": "sg:person.014073072315.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073072315.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Automation, Central South University, Changsha, China", 
          "id": "http://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Automation, Central South University, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Xiaoyu", 
        "id": "sg:person.016160445571.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016160445571.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China", 
          "id": "http://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "Mobile Health Ministry of Education - China Mobile Joint Laboratory, Central South University, Changsha, China", 
            "Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Shuang", 
        "id": "sg:person.0671022567.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671022567.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mobile Health Ministry of Education - China Mobile Joint Laboratory, Central South University, Changsha, China", 
          "id": "http://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Automation, Central South University, Changsha, China", 
            "Mobile Health Ministry of Education - China Mobile Joint Laboratory, Central South University, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China", 
          "id": "http://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Juan", 
        "id": "sg:person.0617704142.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617704142.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Automation, Central South University, Changsha, China", 
          "id": "http://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Automation, Central South University, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Xinyu", 
        "id": "sg:person.010252754771.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252754771.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China", 
          "id": "http://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuang", 
        "givenName": "Yehong", 
        "id": "sg:person.01354636543.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354636543.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mobile Health Ministry of Education - China Mobile Joint Laboratory, Central South University, Changsha, China", 
          "id": "http://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Automation, Central South University, Changsha, China", 
            "Mobile Health Ministry of Education - China Mobile Joint Laboratory, Central South University, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China", 
          "id": "http://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Xiang", 
        "id": "sg:person.016317172774.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016317172774.87"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-10-24", 
    "datePublishedReg": "2019-10-24", 
    "description": "Abstract\nSkin disease is a quite common disease of human beings, which has been found in all races and ages. It seriously affects people\u2019s quality of life or even endangers people\u2019s lives. In this paper, we propose a large-scale, Asian-dominated dataset of skin diseases with bounding box labels, namely XiangyaDerm. It contains 107,565 clinical images, covering 541 types of skin diseases. Each image in this dataset is labeled by professional doctors. As far as we know, this dataset is the largest clinical image dataset of Asian skin diseases used in Computer Aided Diagnosis (CAD) system worldwide. We compare the classification results of several advanced Convolutional Neural Networks (CNNs) on this dataset. InceptionResNetV2 is the best one for 80 skin disease classification whose Top-1 and Top-3 accuracies can reach 0.588 and 0.764, which proves the usefulness of the proposed benchmark dataset, and gives the baseline performance on it. The cross-test experiment with Derm101 shows us that the CNN model has a very different test effect on different ethnic datasets. Therefore, to build a skin disease CAD system with high performance and stability, we recommend to establish a specific dataset of skin diseases for different regions and races.", 
    "editor": [
      {
        "familyName": "Zhou", 
        "givenName": "Luping", 
        "type": "Person"
      }, 
      {
        "familyName": "Heller", 
        "givenName": "Nicholas", 
        "type": "Person"
      }, 
      {
        "familyName": "Shi", 
        "givenName": "Yiyu", 
        "type": "Person"
      }, 
      {
        "familyName": "Xiao", 
        "givenName": "Yiming", 
        "type": "Person"
      }, 
      {
        "familyName": "Sznitman", 
        "givenName": "Raphael", 
        "type": "Person"
      }, 
      {
        "familyName": "Cheplygina", 
        "givenName": "Veronika", 
        "type": "Person"
      }, 
      {
        "familyName": "Mateus", 
        "givenName": "Diana", 
        "type": "Person"
      }, 
      {
        "familyName": "Trucco", 
        "givenName": "Emanuele", 
        "type": "Person"
      }, 
      {
        "familyName": "Hu", 
        "givenName": "X. Sharon", 
        "type": "Person"
      }, 
      {
        "familyName": "Chen", 
        "givenName": "Danny", 
        "type": "Person"
      }, 
      {
        "familyName": "Chabanas", 
        "givenName": "Matthieu", 
        "type": "Person"
      }, 
      {
        "familyName": "Rivaz", 
        "givenName": "Hassan", 
        "type": "Person"
      }, 
      {
        "familyName": "Reinertsen", 
        "givenName": "Ingerid", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-33642-4_3", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-33641-7", 
        "978-3-030-33642-4"
      ], 
      "name": "Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention", 
      "type": "Book"
    }, 
    "keywords": [
      "skin diseases", 
      "Asian race", 
      "disease", 
      "common disease", 
      "clinical image datasets", 
      "disease classification", 
      "baseline performance", 
      "clinical images", 
      "diagnosis", 
      "professional doctors", 
      "race", 
      "life", 
      "age", 
      "people's quality", 
      "doctors", 
      "Aided Diagnosis", 
      "skin disease classification", 
      "test effects", 
      "Asians", 
      "Computer-Aided Diagnosis System", 
      "Aided Diagnosis System", 
      "different regions", 
      "quality", 
      "usefulness", 
      "effect", 
      "human beings", 
      "classification", 
      "types", 
      "box labels", 
      "results", 
      "being", 
      "labels", 
      "diagnosis system", 
      "InceptionResNetV2", 
      "region", 
      "system", 
      "images", 
      "Top-1", 
      "model", 
      "Top-3 accuracy", 
      "CAD system", 
      "people's lives", 
      "dataset", 
      "accuracy", 
      "experiments", 
      "convolutional neural network", 
      "performance", 
      "CNN model", 
      "image datasets", 
      "stability", 
      "classification results", 
      "network", 
      "neural network", 
      "advanced convolutional neural networks", 
      "specific dataset", 
      "paper", 
      "high performance", 
      "benchmark datasets"
    ], 
    "name": "XiangyaDerm: A Clinical Image Dataset of Asian Race for Skin Disease Aided Diagnosis", 
    "pagination": "22-31", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1122752072"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-33642-4_3"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-33642-4_3", 
      "https://app.dimensions.ai/details/publication/pub.1122752072"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_284.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-33642-4_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-33642-4_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-33642-4_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-33642-4_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-33642-4_3'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      22 PREDICATES      82 URIs      75 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-33642-4_3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3da5b56f5f8b47739ed70658d5a431a1
4 schema:datePublished 2019-10-24
5 schema:datePublishedReg 2019-10-24
6 schema:description Abstract Skin disease is a quite common disease of human beings, which has been found in all races and ages. It seriously affects people’s quality of life or even endangers people’s lives. In this paper, we propose a large-scale, Asian-dominated dataset of skin diseases with bounding box labels, namely XiangyaDerm. It contains 107,565 clinical images, covering 541 types of skin diseases. Each image in this dataset is labeled by professional doctors. As far as we know, this dataset is the largest clinical image dataset of Asian skin diseases used in Computer Aided Diagnosis (CAD) system worldwide. We compare the classification results of several advanced Convolutional Neural Networks (CNNs) on this dataset. InceptionResNetV2 is the best one for 80 skin disease classification whose Top-1 and Top-3 accuracies can reach 0.588 and 0.764, which proves the usefulness of the proposed benchmark dataset, and gives the baseline performance on it. The cross-test experiment with Derm101 shows us that the CNN model has a very different test effect on different ethnic datasets. Therefore, to build a skin disease CAD system with high performance and stability, we recommend to establish a specific dataset of skin diseases for different regions and races.
7 schema:editor N6254a6a6558b472e857bc688666396ca
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N096618b5797c43128f89a644ce2076e8
11 schema:keywords Aided Diagnosis
12 Aided Diagnosis System
13 Asian race
14 Asians
15 CAD system
16 CNN model
17 Computer-Aided Diagnosis System
18 InceptionResNetV2
19 Top-1
20 Top-3 accuracy
21 accuracy
22 advanced convolutional neural networks
23 age
24 baseline performance
25 being
26 benchmark datasets
27 box labels
28 classification
29 classification results
30 clinical image datasets
31 clinical images
32 common disease
33 convolutional neural network
34 dataset
35 diagnosis
36 diagnosis system
37 different regions
38 disease
39 disease classification
40 doctors
41 effect
42 experiments
43 high performance
44 human beings
45 image datasets
46 images
47 labels
48 life
49 model
50 network
51 neural network
52 paper
53 people's lives
54 people's quality
55 performance
56 professional doctors
57 quality
58 race
59 region
60 results
61 skin disease classification
62 skin diseases
63 specific dataset
64 stability
65 system
66 test effects
67 types
68 usefulness
69 schema:name XiangyaDerm: A Clinical Image Dataset of Asian Race for Skin Disease Aided Diagnosis
70 schema:pagination 22-31
71 schema:productId N8f0a10fdf5de4339a36823d6b85c2019
72 Ndaaaea205f93455986c2aff020db2412
73 schema:publisher Ne96d0f920458402391fc15e7bd390d53
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122752072
75 https://doi.org/10.1007/978-3-030-33642-4_3
76 schema:sdDatePublished 2022-09-02T16:13
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N7c6907767e96464eb772522542a60585
79 schema:url https://doi.org/10.1007/978-3-030-33642-4_3
80 sgo:license sg:explorer/license/
81 sgo:sdDataset chapters
82 rdf:type schema:Chapter
83 N00499c2ca7fa4b0caee3ad766b772481 rdf:first N7dbf89d62166459d8bc78f2265ca7b00
84 rdf:rest N6889001f2db345a7b7fd03ac86ad63e1
85 N096618b5797c43128f89a644ce2076e8 schema:isbn 978-3-030-33641-7
86 978-3-030-33642-4
87 schema:name Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention
88 rdf:type schema:Book
89 N16867985d3ee4e1689882d09fe826cbd rdf:first Nd3fa944876924ddcbfc98eb2337f51ca
90 rdf:rest N29485415de4446d5b3683d8c4db87a68
91 N17acd25ab45f4561a00194a870a40444 rdf:first sg:person.0617704142.91
92 rdf:rest N575863315e8b40d8b65d70d372245dbf
93 N1bc4939a19b54ed786efb99e54c9b362 rdf:first N8414f3b8d34b4e0bab33a1a01df2de55
94 rdf:rest Nb63cdd1b980047e0b8150fc6d72c62cd
95 N1fcdb9817c5d4c63ae7f62fe5809654d schema:familyName Zhou
96 schema:givenName Luping
97 rdf:type schema:Person
98 N23cf516ba51d4c63b47caf6b5b318c51 rdf:first sg:person.016160445571.16
99 rdf:rest Nbe280588b5d44b8aa3440d1624742005
100 N29485415de4446d5b3683d8c4db87a68 rdf:first Ndaffc43201cc412186d33ffce957deab
101 rdf:rest Nfa9e3a38679d45b9b5ac1be096980e07
102 N33ab9928754b4ef697d5b8bea8ca9e27 rdf:first Nd5d0c0f969314307b1b8ef5566b3f9c3
103 rdf:rest N1bc4939a19b54ed786efb99e54c9b362
104 N37d7f9291280482fa49d37284002ed97 schema:familyName Heller
105 schema:givenName Nicholas
106 rdf:type schema:Person
107 N37ed84f082eb41d19d60962c2112ad49 rdf:first N6f5cba972c30414e983244f6063c01ad
108 rdf:rest rdf:nil
109 N3cd31a2440eb4f54b94e88a5c52029b0 schema:affiliation grid-institutes:grid.216417.7
110 schema:familyName Wang
111 schema:givenName Yong
112 rdf:type schema:Person
113 N3da5b56f5f8b47739ed70658d5a431a1 rdf:first sg:person.014073072315.34
114 rdf:rest N23cf516ba51d4c63b47caf6b5b318c51
115 N49426e920a5744f4909bc3873a6e2981 schema:affiliation grid-institutes:grid.216417.7
116 schema:familyName Li
117 schema:givenName Yi
118 rdf:type schema:Person
119 N575863315e8b40d8b65d70d372245dbf rdf:first sg:person.010252754771.83
120 rdf:rest N9200b03e783843949e6a8976dd7aa954
121 N6254a6a6558b472e857bc688666396ca rdf:first N1fcdb9817c5d4c63ae7f62fe5809654d
122 rdf:rest Nfe2e5c5d6a92439d96fa679508608c1d
123 N6889001f2db345a7b7fd03ac86ad63e1 rdf:first Ndbef819e0e854a40842ce3b9f41861e4
124 rdf:rest Nf195e0f18bd44850b905c0a97f272a74
125 N6a92885212f34383833cbffa76bf3614 rdf:first sg:person.016317172774.87
126 rdf:rest rdf:nil
127 N6f5cba972c30414e983244f6063c01ad schema:familyName Reinertsen
128 schema:givenName Ingerid
129 rdf:type schema:Person
130 N7698bae84440490ba16012900cbdd486 rdf:first N3cd31a2440eb4f54b94e88a5c52029b0
131 rdf:rest N6a92885212f34383833cbffa76bf3614
132 N7c6907767e96464eb772522542a60585 schema:name Springer Nature - SN SciGraph project
133 rdf:type schema:Organization
134 N7dbf89d62166459d8bc78f2265ca7b00 schema:familyName Chen
135 schema:givenName Danny
136 rdf:type schema:Person
137 N8414f3b8d34b4e0bab33a1a01df2de55 schema:familyName Trucco
138 schema:givenName Emanuele
139 rdf:type schema:Person
140 N8e8a17a0ad6f444fb545b26a93f249c5 schema:familyName Hu
141 schema:givenName X. Sharon
142 rdf:type schema:Person
143 N8f0a10fdf5de4339a36823d6b85c2019 schema:name doi
144 schema:value 10.1007/978-3-030-33642-4_3
145 rdf:type schema:PropertyValue
146 N9200b03e783843949e6a8976dd7aa954 rdf:first sg:person.01354636543.89
147 rdf:rest N7698bae84440490ba16012900cbdd486
148 Nb63cdd1b980047e0b8150fc6d72c62cd rdf:first N8e8a17a0ad6f444fb545b26a93f249c5
149 rdf:rest N00499c2ca7fa4b0caee3ad766b772481
150 Nb7afb92845bc411a8c1364d85b59ae1b rdf:first Nf5fae5d318eb4720896b595d59061ca3
151 rdf:rest N33ab9928754b4ef697d5b8bea8ca9e27
152 Nbe280588b5d44b8aa3440d1624742005 rdf:first sg:person.0671022567.52
153 rdf:rest Nd2c8ca9149054050804d9f8c68fbc566
154 Nc17a332713f8450ea9a65be1fde1dc6b schema:familyName Sznitman
155 schema:givenName Raphael
156 rdf:type schema:Person
157 Nd2c8ca9149054050804d9f8c68fbc566 rdf:first N49426e920a5744f4909bc3873a6e2981
158 rdf:rest N17acd25ab45f4561a00194a870a40444
159 Nd3fa944876924ddcbfc98eb2337f51ca schema:familyName Shi
160 schema:givenName Yiyu
161 rdf:type schema:Person
162 Nd5d0c0f969314307b1b8ef5566b3f9c3 schema:familyName Mateus
163 schema:givenName Diana
164 rdf:type schema:Person
165 Ndaaaea205f93455986c2aff020db2412 schema:name dimensions_id
166 schema:value pub.1122752072
167 rdf:type schema:PropertyValue
168 Ndaffc43201cc412186d33ffce957deab schema:familyName Xiao
169 schema:givenName Yiming
170 rdf:type schema:Person
171 Ndbef819e0e854a40842ce3b9f41861e4 schema:familyName Chabanas
172 schema:givenName Matthieu
173 rdf:type schema:Person
174 Ne96d0f920458402391fc15e7bd390d53 schema:name Springer Nature
175 rdf:type schema:Organisation
176 Nf097fd586f794ee381bdbe2aa9cd229d schema:familyName Rivaz
177 schema:givenName Hassan
178 rdf:type schema:Person
179 Nf195e0f18bd44850b905c0a97f272a74 rdf:first Nf097fd586f794ee381bdbe2aa9cd229d
180 rdf:rest N37ed84f082eb41d19d60962c2112ad49
181 Nf5fae5d318eb4720896b595d59061ca3 schema:familyName Cheplygina
182 schema:givenName Veronika
183 rdf:type schema:Person
184 Nfa9e3a38679d45b9b5ac1be096980e07 rdf:first Nc17a332713f8450ea9a65be1fde1dc6b
185 rdf:rest Nb7afb92845bc411a8c1364d85b59ae1b
186 Nfe2e5c5d6a92439d96fa679508608c1d rdf:first N37d7f9291280482fa49d37284002ed97
187 rdf:rest N16867985d3ee4e1689882d09fe826cbd
188 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
189 schema:name Information and Computing Sciences
190 rdf:type schema:DefinedTerm
191 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
192 schema:name Artificial Intelligence and Image Processing
193 rdf:type schema:DefinedTerm
194 sg:person.010252754771.83 schema:affiliation grid-institutes:grid.216417.7
195 schema:familyName Zhao
196 schema:givenName Xinyu
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252754771.83
198 rdf:type schema:Person
199 sg:person.01354636543.89 schema:affiliation grid-institutes:grid.216417.7
200 schema:familyName Kuang
201 schema:givenName Yehong
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354636543.89
203 rdf:type schema:Person
204 sg:person.014073072315.34 schema:affiliation grid-institutes:grid.216417.7
205 schema:familyName Xie
206 schema:givenName Bin
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073072315.34
208 rdf:type schema:Person
209 sg:person.016160445571.16 schema:affiliation grid-institutes:grid.216417.7
210 schema:familyName He
211 schema:givenName Xiaoyu
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016160445571.16
213 rdf:type schema:Person
214 sg:person.016317172774.87 schema:affiliation grid-institutes:grid.216417.7
215 schema:familyName Chen
216 schema:givenName Xiang
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016317172774.87
218 rdf:type schema:Person
219 sg:person.0617704142.91 schema:affiliation grid-institutes:grid.216417.7
220 schema:familyName Su
221 schema:givenName Juan
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617704142.91
223 rdf:type schema:Person
224 sg:person.0671022567.52 schema:affiliation grid-institutes:grid.216417.7
225 schema:familyName Zhao
226 schema:givenName Shuang
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671022567.52
228 rdf:type schema:Person
229 grid-institutes:grid.216417.7 schema:alternateName Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
230 Mobile Health Ministry of Education - China Mobile Joint Laboratory, Central South University, Changsha, China
231 School of Automation, Central South University, Changsha, China
232 schema:name Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
233 Mobile Health Ministry of Education - China Mobile Joint Laboratory, Central South University, Changsha, China
234 School of Automation, Central South University, Changsha, China
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...