Select, Attend, and Transfer: Light, Learnable Skip Connections View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2019-10-10

AUTHORS

Saeid Asgari Taghanaki , Aicha Bentaieb , Anmol Sharma , S. Kevin Zhou , Yefeng Zheng , Bogdan Georgescu , Puneet Sharma , Zhoubing Xu , Dorin Comaniciu , Ghassan Hamarneh

ABSTRACT

Skip connections in deep networks have improved both segmentation and classification performance by facilitating the training of deeper network architectures and reducing the risks for vanishing gradients. The skip connections equip encoder-decoder like networks with richer feature representations, but at the cost of higher memory usage, computation, and possibly resulting in transferring non-discriminative feature maps. In this paper, we focus on improving the skip connections used in segmentation networks. We propose light, learnable skip connections which learn to first select the most discriminative channels, and then aggregate the selected ones as single channel attending to the most discriminative regions of input. We evaluate the proposed method on 3 different 2D and volumetric datasets and demonstrate that the proposed skip connections can outperform the traditional heavy skip connections of 4 different models in terms of segmentation accuracy (2% Dice), memory usage (at least 50%), and the number of network parameters (up to 70%). More... »

PAGES

417-425

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-32692-0_48

DOI

http://dx.doi.org/10.1007/978-3-030-32692-0_48

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1121621807


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby, Canada", 
            "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taghanaki", 
        "givenName": "Saeid Asgari", 
        "id": "sg:person.013754250667.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013754250667.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby, Canada", 
          "id": "http://www.grid.ac/institutes/grid.61971.38", 
          "name": [
            "Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bentaieb", 
        "givenName": "Aicha", 
        "id": "sg:person.012771740525.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012771740525.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby, Canada", 
          "id": "http://www.grid.ac/institutes/grid.61971.38", 
          "name": [
            "Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharma", 
        "givenName": "Anmol", 
        "id": "sg:person.07537734265.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07537734265.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "S. Kevin", 
        "id": "sg:person.01372425362.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372425362.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Yefeng", 
        "id": "sg:person.0767211426.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767211426.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharma", 
        "givenName": "Puneet", 
        "id": "sg:person.01154725330.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154725330.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Zhoubing", 
        "id": "sg:person.013364364655.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013364364655.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby, Canada", 
          "id": "http://www.grid.ac/institutes/grid.61971.38", 
          "name": [
            "Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamarneh", 
        "givenName": "Ghassan", 
        "id": "sg:person.0642774233.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642774233.16"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-10-10", 
    "datePublishedReg": "2019-10-10", 
    "description": "Skip connections in deep networks have improved both segmentation and classification performance by facilitating the training of deeper network architectures and reducing the risks for vanishing gradients. The skip connections equip encoder-decoder like networks with richer feature representations, but at the cost of higher memory usage, computation, and possibly resulting in transferring non-discriminative feature maps. In this paper, we focus on improving the skip connections used in segmentation networks. We propose light, learnable skip connections which learn to first select the most discriminative channels, and then aggregate the selected ones as single channel attending to the most discriminative regions of input. We evaluate the proposed method on 3 different 2D and volumetric datasets and demonstrate that the proposed skip connections can outperform the traditional heavy skip connections of 4 different models in terms of segmentation accuracy (2% Dice), memory usage (at least 50%), and the number of network parameters (up\u00a0to 70%).", 
    "editor": [
      {
        "familyName": "Suk", 
        "givenName": "Heung-Il", 
        "type": "Person"
      }, 
      {
        "familyName": "Liu", 
        "givenName": "Mingxia", 
        "type": "Person"
      }, 
      {
        "familyName": "Yan", 
        "givenName": "Pingkun", 
        "type": "Person"
      }, 
      {
        "familyName": "Lian", 
        "givenName": "Chunfeng", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-32692-0_48", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-030-32691-3", 
        "978-3-030-32692-0"
      ], 
      "name": "Machine Learning in Medical Imaging", 
      "type": "Book"
    }, 
    "keywords": [
      "skip connections", 
      "memory usage", 
      "deep network architecture", 
      "high memory usage", 
      "rich feature representations", 
      "deep network", 
      "segmentation network", 
      "feature representation", 
      "network architecture", 
      "feature maps", 
      "segmentation accuracy", 
      "classification performance", 
      "volumetric datasets", 
      "discriminative regions", 
      "network parameters", 
      "discriminative channels", 
      "network", 
      "usage", 
      "segmentation", 
      "architecture", 
      "dataset", 
      "single channel", 
      "computation", 
      "different models", 
      "representation", 
      "accuracy", 
      "connection", 
      "performance", 
      "input", 
      "cost", 
      "channels", 
      "maps", 
      "equip", 
      "training", 
      "model", 
      "method", 
      "one", 
      "terms", 
      "number", 
      "parameters", 
      "transfer", 
      "gradient", 
      "region", 
      "light", 
      "risk", 
      "paper", 
      "skip connections equip", 
      "connections equip", 
      "non-discriminative feature maps", 
      "learnable skip connections", 
      "traditional heavy skip connections", 
      "heavy skip connections"
    ], 
    "name": "Select, Attend, and Transfer: Light, Learnable Skip Connections", 
    "pagination": "417-425", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1121621807"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-32692-0_48"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-32692-0_48", 
      "https://app.dimensions.ai/details/publication/pub.1121621807"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_167.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-32692-0_48"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32692-0_48'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32692-0_48'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32692-0_48'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32692-0_48'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      23 PREDICATES      77 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-32692-0_48 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N2d0165f0c2b84af3813da0630f16c50d
4 schema:datePublished 2019-10-10
5 schema:datePublishedReg 2019-10-10
6 schema:description Skip connections in deep networks have improved both segmentation and classification performance by facilitating the training of deeper network architectures and reducing the risks for vanishing gradients. The skip connections equip encoder-decoder like networks with richer feature representations, but at the cost of higher memory usage, computation, and possibly resulting in transferring non-discriminative feature maps. In this paper, we focus on improving the skip connections used in segmentation networks. We propose light, learnable skip connections which learn to first select the most discriminative channels, and then aggregate the selected ones as single channel attending to the most discriminative regions of input. We evaluate the proposed method on 3 different 2D and volumetric datasets and demonstrate that the proposed skip connections can outperform the traditional heavy skip connections of 4 different models in terms of segmentation accuracy (2% Dice), memory usage (at least 50%), and the number of network parameters (up to 70%).
7 schema:editor N563edda1e2de4a858f53cb2e46a21ccb
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N6f8aec7324504ba5b9a1ee03c6bb55a5
12 schema:keywords accuracy
13 architecture
14 channels
15 classification performance
16 computation
17 connection
18 connections equip
19 cost
20 dataset
21 deep network
22 deep network architecture
23 different models
24 discriminative channels
25 discriminative regions
26 equip
27 feature maps
28 feature representation
29 gradient
30 heavy skip connections
31 high memory usage
32 input
33 learnable skip connections
34 light
35 maps
36 memory usage
37 method
38 model
39 network
40 network architecture
41 network parameters
42 non-discriminative feature maps
43 number
44 one
45 paper
46 parameters
47 performance
48 region
49 representation
50 rich feature representations
51 risk
52 segmentation
53 segmentation accuracy
54 segmentation network
55 single channel
56 skip connections
57 skip connections equip
58 terms
59 traditional heavy skip connections
60 training
61 transfer
62 usage
63 volumetric datasets
64 schema:name Select, Attend, and Transfer: Light, Learnable Skip Connections
65 schema:pagination 417-425
66 schema:productId N438fdc745e8d412f9fa0335f07941e8b
67 N86074e9e3a1f4f5da109a86bbdf1648c
68 schema:publisher Nc9064b1526e64be397c0105b203ec7f4
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121621807
70 https://doi.org/10.1007/978-3-030-32692-0_48
71 schema:sdDatePublished 2022-01-01T19:10
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N679ec87529e64a08988623369d7f993b
74 schema:url https://doi.org/10.1007/978-3-030-32692-0_48
75 sgo:license sg:explorer/license/
76 sgo:sdDataset chapters
77 rdf:type schema:Chapter
78 N1121f45296f641fa869e229edb2e350b rdf:first N3e974931dbfa43428979e56e475a4069
79 rdf:rest Ncd56352b9c0c49168c51e03e65375ef8
80 N1364e6c2720d41fcbd99c2bb61ea6b4d rdf:first N75bdfac148294f15a2922ca0b4b59508
81 rdf:rest rdf:nil
82 N176e47f797844a7f952c5c95e2732e3a rdf:first sg:person.013364364655.13
83 rdf:rest N96ccb009a1024874b3ff5a08db87e466
84 N1c02dad8e86b472b85714c46520f3b21 rdf:first sg:person.07537734265.49
85 rdf:rest N201687bd70e64ffb998a8802dc91297b
86 N201687bd70e64ffb998a8802dc91297b rdf:first sg:person.01372425362.30
87 rdf:rest Nf6b70c5e45194034a9108c23b286dd2e
88 N2d0165f0c2b84af3813da0630f16c50d rdf:first sg:person.013754250667.08
89 rdf:rest Nd319e4c1b4764fbdb0cd76a67f18c5ba
90 N3e974931dbfa43428979e56e475a4069 schema:familyName Liu
91 schema:givenName Mingxia
92 rdf:type schema:Person
93 N438fdc745e8d412f9fa0335f07941e8b schema:name doi
94 schema:value 10.1007/978-3-030-32692-0_48
95 rdf:type schema:PropertyValue
96 N4d0e9c5ed0034608bfb415619ac7fb59 schema:familyName Yan
97 schema:givenName Pingkun
98 rdf:type schema:Person
99 N563edda1e2de4a858f53cb2e46a21ccb rdf:first Ncb484334bc994c35b6d622798d704b87
100 rdf:rest N1121f45296f641fa869e229edb2e350b
101 N5eb77d9e3c00487d9d71df4c62263839 rdf:first sg:person.01154725330.99
102 rdf:rest N176e47f797844a7f952c5c95e2732e3a
103 N679ec87529e64a08988623369d7f993b schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N6f8aec7324504ba5b9a1ee03c6bb55a5 schema:isbn 978-3-030-32691-3
106 978-3-030-32692-0
107 schema:name Machine Learning in Medical Imaging
108 rdf:type schema:Book
109 N75bdfac148294f15a2922ca0b4b59508 schema:familyName Lian
110 schema:givenName Chunfeng
111 rdf:type schema:Person
112 N86074e9e3a1f4f5da109a86bbdf1648c schema:name dimensions_id
113 schema:value pub.1121621807
114 rdf:type schema:PropertyValue
115 N96ccb009a1024874b3ff5a08db87e466 rdf:first sg:person.01066111014.77
116 rdf:rest Nce951deb604741a1aa332a27542781ff
117 Nc9064b1526e64be397c0105b203ec7f4 schema:name Springer Nature
118 rdf:type schema:Organisation
119 Ncb484334bc994c35b6d622798d704b87 schema:familyName Suk
120 schema:givenName Heung-Il
121 rdf:type schema:Person
122 Ncd56352b9c0c49168c51e03e65375ef8 rdf:first N4d0e9c5ed0034608bfb415619ac7fb59
123 rdf:rest N1364e6c2720d41fcbd99c2bb61ea6b4d
124 Nce951deb604741a1aa332a27542781ff rdf:first sg:person.0642774233.16
125 rdf:rest rdf:nil
126 Nd319e4c1b4764fbdb0cd76a67f18c5ba rdf:first sg:person.012771740525.65
127 rdf:rest N1c02dad8e86b472b85714c46520f3b21
128 Nec160906bfa745359c279bff771060ee rdf:first sg:person.0703547214.37
129 rdf:rest N5eb77d9e3c00487d9d71df4c62263839
130 Nf6b70c5e45194034a9108c23b286dd2e rdf:first sg:person.0767211426.21
131 rdf:rest Nec160906bfa745359c279bff771060ee
132 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
133 schema:name Information and Computing Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
136 schema:name Artificial Intelligence and Image Processing
137 rdf:type schema:DefinedTerm
138 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.415886.6
139 schema:familyName Comaniciu
140 schema:givenName Dorin
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
142 rdf:type schema:Person
143 sg:person.01154725330.99 schema:affiliation grid-institutes:grid.415886.6
144 schema:familyName Sharma
145 schema:givenName Puneet
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154725330.99
147 rdf:type schema:Person
148 sg:person.012771740525.65 schema:affiliation grid-institutes:grid.61971.38
149 schema:familyName Bentaieb
150 schema:givenName Aicha
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012771740525.65
152 rdf:type schema:Person
153 sg:person.013364364655.13 schema:affiliation grid-institutes:grid.415886.6
154 schema:familyName Xu
155 schema:givenName Zhoubing
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013364364655.13
157 rdf:type schema:Person
158 sg:person.01372425362.30 schema:affiliation grid-institutes:grid.415886.6
159 schema:familyName Zhou
160 schema:givenName S. Kevin
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372425362.30
162 rdf:type schema:Person
163 sg:person.013754250667.08 schema:affiliation grid-institutes:grid.415886.6
164 schema:familyName Taghanaki
165 schema:givenName Saeid Asgari
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013754250667.08
167 rdf:type schema:Person
168 sg:person.0642774233.16 schema:affiliation grid-institutes:grid.61971.38
169 schema:familyName Hamarneh
170 schema:givenName Ghassan
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642774233.16
172 rdf:type schema:Person
173 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.415886.6
174 schema:familyName Georgescu
175 schema:givenName Bogdan
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
177 rdf:type schema:Person
178 sg:person.07537734265.49 schema:affiliation grid-institutes:grid.61971.38
179 schema:familyName Sharma
180 schema:givenName Anmol
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07537734265.49
182 rdf:type schema:Person
183 sg:person.0767211426.21 schema:affiliation grid-institutes:grid.415886.6
184 schema:familyName Zheng
185 schema:givenName Yefeng
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767211426.21
187 rdf:type schema:Person
188 grid-institutes:grid.415886.6 schema:alternateName Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA
189 schema:name Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby, Canada
190 Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA
191 rdf:type schema:Organization
192 grid-institutes:grid.61971.38 schema:alternateName Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby, Canada
193 schema:name Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby, Canada
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...