User Behavior Tracking for Education Assisting System by Using an RGB-D Sensor View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-11-07

AUTHORS

Haibin Xia , Bin Zhang , Tomoaki Nakamura , Takayuki Nagai , Takashi Omori , Masahide Kaneko , Rena Ushiogi , Natsuki Oka , Hun-ok Lim

ABSTRACT

It is difficult to track multiple people effectively for a long time in a complex environment because people’s clothes and body shapes may be similar, and their postures may be constantly changing. This paper proposes a novel method for multiple people tracking in crowded places where people can be partially or completely occluded. The people are detected by the deep learning method ConvNet from the color image first, and detection results are integrated with the depth information so that the accurate human areas can be extracted. The accurate personal color information can be extracted then without any background color information. multiple people tracking is proceeded by using particle filter based on the color information. the effectiveness of the proposed method is verified through experiments of tracking multiple children in a classroom. More... »

PAGES

923-931

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-32591-6_101

DOI

http://dx.doi.org/10.1007/978-3-030-32591-6_101

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1122361783


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kanagawa University, 2218686, Yokohama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.411995.1", 
          "name": [
            "Kanagawa University, 2218686, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Haibin", 
        "id": "sg:person.016027226047.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016027226047.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kanagawa University, 2218686, Yokohama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.411995.1", 
          "name": [
            "Kanagawa University, 2218686, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Bin", 
        "id": "sg:person.011402175465.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011402175465.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Electro-Communications, 1828585, Chofu, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "The University of Electro-Communications, 1828585, Chofu, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Tomoaki", 
        "id": "sg:person.014427541053.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014427541053.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Electro-Communications, 1828585, Chofu, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "The University of Electro-Communications, 1828585, Chofu, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagai", 
        "givenName": "Takayuki", 
        "id": "sg:person.010572730431.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010572730431.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tamagawa University, 1928612, Machida, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412905.b", 
          "name": [
            "Tamagawa University, 1928612, Machida, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Omori", 
        "givenName": "Takashi", 
        "id": "sg:person.01263557346.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263557346.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Electro-Communications, 1828585, Chofu, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "The University of Electro-Communications, 1828585, Chofu, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaneko", 
        "givenName": "Masahide", 
        "id": "sg:person.015217433371.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015217433371.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Otsuma Women\u2019s University, 1028357, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412426.7", 
          "name": [
            "Otsuma Women\u2019s University, 1028357, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ushiogi", 
        "givenName": "Rena", 
        "id": "sg:person.012010722331.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012010722331.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto Institute of Technology, 6068585, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.419025.b", 
          "name": [
            "Kyoto Institute of Technology, 6068585, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oka", 
        "givenName": "Natsuki", 
        "id": "sg:person.010775400155.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010775400155.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kanagawa University, 2218686, Yokohama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.411995.1", 
          "name": [
            "Kanagawa University, 2218686, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Hun-ok", 
        "id": "sg:person.016243320241.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016243320241.03"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-11-07", 
    "datePublishedReg": "2019-11-07", 
    "description": "It is difficult to track multiple people effectively for a long time in a complex environment because people\u2019s clothes and body shapes may be similar, and their postures may be constantly changing. This paper proposes a novel method for multiple people tracking in crowded places where people can be partially or completely occluded. The people are detected by the deep learning method ConvNet from the color image first, and detection results are integrated with the depth information so that the accurate human areas can be extracted. The accurate personal color information can be extracted then without any background color information. multiple people tracking is proceeded by using particle filter based on the color information. the effectiveness of the proposed method is verified through experiments of tracking multiple children in a classroom.", 
    "editor": [
      {
        "familyName": "Liu", 
        "givenName": "Yong", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "Lipo", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhao", 
        "givenName": "Liang", 
        "type": "Person"
      }, 
      {
        "familyName": "Yu", 
        "givenName": "Zhengtao", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-32591-6_101", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-32590-9", 
        "978-3-030-32591-6"
      ], 
      "name": "Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery", 
      "type": "Book"
    }, 
    "keywords": [
      "color information", 
      "multiple people", 
      "background color information", 
      "multiple people tracking", 
      "people tracking", 
      "people\u2019s clothes", 
      "depth information", 
      "color images", 
      "assisting system", 
      "behavior tracking", 
      "detection results", 
      "complex environments", 
      "human areas", 
      "crowded places", 
      "particle filter", 
      "tracking", 
      "information", 
      "novel method", 
      "ConvNets", 
      "RGB", 
      "images", 
      "sensors", 
      "environment", 
      "method", 
      "effectiveness", 
      "clothes", 
      "system", 
      "people", 
      "long time", 
      "filter", 
      "body shape", 
      "experiments", 
      "posture", 
      "time", 
      "results", 
      "area", 
      "multiple children", 
      "classroom", 
      "shape", 
      "place", 
      "children", 
      "paper", 
      "deep learning method ConvNet", 
      "learning method ConvNet", 
      "method ConvNet", 
      "accurate human areas", 
      "accurate personal color information", 
      "personal color information", 
      "User Behavior Tracking", 
      "Education Assisting System"
    ], 
    "name": "User Behavior Tracking for Education Assisting System by Using an RGB-D Sensor", 
    "pagination": "923-931", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1122361783"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-32591-6_101"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-32591-6_101", 
      "https://app.dimensions.ai/details/publication/pub.1122361783"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_349.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-32591-6_101"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32591-6_101'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32591-6_101'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32591-6_101'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32591-6_101'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      23 PREDICATES      75 URIs      68 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-32591-6_101 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8adcfaf0a14b44e4a7b2fe0879e615b9
4 schema:datePublished 2019-11-07
5 schema:datePublishedReg 2019-11-07
6 schema:description It is difficult to track multiple people effectively for a long time in a complex environment because people’s clothes and body shapes may be similar, and their postures may be constantly changing. This paper proposes a novel method for multiple people tracking in crowded places where people can be partially or completely occluded. The people are detected by the deep learning method ConvNet from the color image first, and detection results are integrated with the depth information so that the accurate human areas can be extracted. The accurate personal color information can be extracted then without any background color information. multiple people tracking is proceeded by using particle filter based on the color information. the effectiveness of the proposed method is verified through experiments of tracking multiple children in a classroom.
7 schema:editor N4c4f11e9f6e34bb9b39c6c0f623f949a
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nac9d221a72b9480e9fdfa56821aacf1c
12 schema:keywords ConvNets
13 Education Assisting System
14 RGB
15 User Behavior Tracking
16 accurate human areas
17 accurate personal color information
18 area
19 assisting system
20 background color information
21 behavior tracking
22 body shape
23 children
24 classroom
25 clothes
26 color images
27 color information
28 complex environments
29 crowded places
30 deep learning method ConvNet
31 depth information
32 detection results
33 effectiveness
34 environment
35 experiments
36 filter
37 human areas
38 images
39 information
40 learning method ConvNet
41 long time
42 method
43 method ConvNet
44 multiple children
45 multiple people
46 multiple people tracking
47 novel method
48 paper
49 particle filter
50 people
51 people tracking
52 people’s clothes
53 personal color information
54 place
55 posture
56 results
57 sensors
58 shape
59 system
60 time
61 tracking
62 schema:name User Behavior Tracking for Education Assisting System by Using an RGB-D Sensor
63 schema:pagination 923-931
64 schema:productId N9fbabfa1ef1a4c8980b1e4a8a324d9f5
65 Ne8ef6b2ac19c432ea719febf1da12393
66 schema:publisher N9e7c93c1591b4935a9160a31c44a20e0
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122361783
68 https://doi.org/10.1007/978-3-030-32591-6_101
69 schema:sdDatePublished 2022-01-01T19:20
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N31f1579f72c848ce92ed52bae7c5962f
72 schema:url https://doi.org/10.1007/978-3-030-32591-6_101
73 sgo:license sg:explorer/license/
74 sgo:sdDataset chapters
75 rdf:type schema:Chapter
76 N08b54cc256a94ea0b177ee50a09052f8 schema:familyName Wang
77 schema:givenName Lipo
78 rdf:type schema:Person
79 N31f1579f72c848ce92ed52bae7c5962f schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N3a777ecb51ec4247912e4d1ad3d4f80a rdf:first N9b644c64e5e74c5eb60a52d9c1f38120
82 rdf:rest Nb1cfa8ea3a134e59a72f74f3728fc940
83 N4453e36b192347958c67641c15a73f86 schema:familyName Yu
84 schema:givenName Zhengtao
85 rdf:type schema:Person
86 N44aac95110064c919fd30a3dcd409eb6 rdf:first sg:person.016243320241.03
87 rdf:rest rdf:nil
88 N4685007945d2408498d6862b5afa081b rdf:first sg:person.011402175465.28
89 rdf:rest Nf67683ec45ce4c33a1a4efe6d3491ec5
90 N4c4f11e9f6e34bb9b39c6c0f623f949a rdf:first N79c78bb2348042f5ae3002ffe9e94322
91 rdf:rest N559f4de56e724d88ae6bd0ee22f27de6
92 N559f4de56e724d88ae6bd0ee22f27de6 rdf:first N08b54cc256a94ea0b177ee50a09052f8
93 rdf:rest N3a777ecb51ec4247912e4d1ad3d4f80a
94 N67b16dca39004092a717ee57d4f4ee5e rdf:first sg:person.01263557346.07
95 rdf:rest Nefaeb542a8344c57bc95ac7824be84c3
96 N751c6837e538432bb451dc5245b42e6d rdf:first sg:person.010775400155.23
97 rdf:rest N44aac95110064c919fd30a3dcd409eb6
98 N79c78bb2348042f5ae3002ffe9e94322 schema:familyName Liu
99 schema:givenName Yong
100 rdf:type schema:Person
101 N8adcfaf0a14b44e4a7b2fe0879e615b9 rdf:first sg:person.016027226047.02
102 rdf:rest N4685007945d2408498d6862b5afa081b
103 N8cf047b3f086475981629614e1bc5593 rdf:first sg:person.010572730431.02
104 rdf:rest N67b16dca39004092a717ee57d4f4ee5e
105 N9b644c64e5e74c5eb60a52d9c1f38120 schema:familyName Zhao
106 schema:givenName Liang
107 rdf:type schema:Person
108 N9e7c93c1591b4935a9160a31c44a20e0 schema:name Springer Nature
109 rdf:type schema:Organisation
110 N9fbabfa1ef1a4c8980b1e4a8a324d9f5 schema:name dimensions_id
111 schema:value pub.1122361783
112 rdf:type schema:PropertyValue
113 Nac9d221a72b9480e9fdfa56821aacf1c schema:isbn 978-3-030-32590-9
114 978-3-030-32591-6
115 schema:name Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery
116 rdf:type schema:Book
117 Nb1cfa8ea3a134e59a72f74f3728fc940 rdf:first N4453e36b192347958c67641c15a73f86
118 rdf:rest rdf:nil
119 Ne22d7597d5b6495589cfe8dcc8e71aed rdf:first sg:person.012010722331.42
120 rdf:rest N751c6837e538432bb451dc5245b42e6d
121 Ne8ef6b2ac19c432ea719febf1da12393 schema:name doi
122 schema:value 10.1007/978-3-030-32591-6_101
123 rdf:type schema:PropertyValue
124 Nefaeb542a8344c57bc95ac7824be84c3 rdf:first sg:person.015217433371.19
125 rdf:rest Ne22d7597d5b6495589cfe8dcc8e71aed
126 Nf67683ec45ce4c33a1a4efe6d3491ec5 rdf:first sg:person.014427541053.61
127 rdf:rest N8cf047b3f086475981629614e1bc5593
128 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
129 schema:name Information and Computing Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
132 schema:name Artificial Intelligence and Image Processing
133 rdf:type schema:DefinedTerm
134 sg:person.010572730431.02 schema:affiliation grid-institutes:grid.266298.1
135 schema:familyName Nagai
136 schema:givenName Takayuki
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010572730431.02
138 rdf:type schema:Person
139 sg:person.010775400155.23 schema:affiliation grid-institutes:grid.419025.b
140 schema:familyName Oka
141 schema:givenName Natsuki
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010775400155.23
143 rdf:type schema:Person
144 sg:person.011402175465.28 schema:affiliation grid-institutes:grid.411995.1
145 schema:familyName Zhang
146 schema:givenName Bin
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011402175465.28
148 rdf:type schema:Person
149 sg:person.012010722331.42 schema:affiliation grid-institutes:grid.412426.7
150 schema:familyName Ushiogi
151 schema:givenName Rena
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012010722331.42
153 rdf:type schema:Person
154 sg:person.01263557346.07 schema:affiliation grid-institutes:grid.412905.b
155 schema:familyName Omori
156 schema:givenName Takashi
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263557346.07
158 rdf:type schema:Person
159 sg:person.014427541053.61 schema:affiliation grid-institutes:grid.266298.1
160 schema:familyName Nakamura
161 schema:givenName Tomoaki
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014427541053.61
163 rdf:type schema:Person
164 sg:person.015217433371.19 schema:affiliation grid-institutes:grid.266298.1
165 schema:familyName Kaneko
166 schema:givenName Masahide
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015217433371.19
168 rdf:type schema:Person
169 sg:person.016027226047.02 schema:affiliation grid-institutes:grid.411995.1
170 schema:familyName Xia
171 schema:givenName Haibin
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016027226047.02
173 rdf:type schema:Person
174 sg:person.016243320241.03 schema:affiliation grid-institutes:grid.411995.1
175 schema:familyName Lim
176 schema:givenName Hun-ok
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016243320241.03
178 rdf:type schema:Person
179 grid-institutes:grid.266298.1 schema:alternateName The University of Electro-Communications, 1828585, Chofu, Japan
180 schema:name The University of Electro-Communications, 1828585, Chofu, Japan
181 rdf:type schema:Organization
182 grid-institutes:grid.411995.1 schema:alternateName Kanagawa University, 2218686, Yokohama, Japan
183 schema:name Kanagawa University, 2218686, Yokohama, Japan
184 rdf:type schema:Organization
185 grid-institutes:grid.412426.7 schema:alternateName Otsuma Women’s University, 1028357, Tokyo, Japan
186 schema:name Otsuma Women’s University, 1028357, Tokyo, Japan
187 rdf:type schema:Organization
188 grid-institutes:grid.412905.b schema:alternateName Tamagawa University, 1928612, Machida, Japan
189 schema:name Tamagawa University, 1928612, Machida, Japan
190 rdf:type schema:Organization
191 grid-institutes:grid.419025.b schema:alternateName Kyoto Institute of Technology, 6068585, Kyoto, Japan
192 schema:name Kyoto Institute of Technology, 6068585, Kyoto, Japan
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...