Formal Analysis of Qualitative Long-Term Behaviour in Parametrised Boolean Networks View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-10-28

AUTHORS

Nikola Beneš , Luboš Brim , Samuel Pastva , Jakub Poláček , David Šafránek

ABSTRACT

Boolean networks offer an elegant way to model the behaviour of complex systems with positive and negative feedback. The long-term behaviour of a Boolean network is characterised by its attractors. Depending on various logical parameters, a Boolean network can exhibit vastly different types of behaviour. Hence, the structure and quality of attractors can undergo a significant change known in systems theory as attractor bifurcation. In this paper, we establish formally the notion of attractor bifurcation for Boolean networks. We propose a semi-symbolic approach to attractor bifurcation analysis based on a parallel algorithm. We use machine-learning techniques to construct a compact, human-readable, representation of the bifurcation analysis results. We demonstrate the method on a set of highly parametrised Boolean networks. More... »

PAGES

353-369

Book

TITLE

Formal Methods and Software Engineering

ISBN

978-3-030-32408-7
978-3-030-32409-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-32409-4_22

DOI

http://dx.doi.org/10.1007/978-3-030-32409-4_22

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1122128588


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Informatics, Masaryk University, Brno, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.10267.32", 
          "name": [
            "Faculty of Informatics, Masaryk University, Brno, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bene\u0161", 
        "givenName": "Nikola", 
        "id": "sg:person.014465763501.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014465763501.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Informatics, Masaryk University, Brno, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.10267.32", 
          "name": [
            "Faculty of Informatics, Masaryk University, Brno, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brim", 
        "givenName": "Lubo\u0161", 
        "id": "sg:person.0645117057.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645117057.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Informatics, Masaryk University, Brno, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.10267.32", 
          "name": [
            "Faculty of Informatics, Masaryk University, Brno, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pastva", 
        "givenName": "Samuel", 
        "id": "sg:person.016130263073.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016130263073.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Informatics, Masaryk University, Brno, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.10267.32", 
          "name": [
            "Faculty of Informatics, Masaryk University, Brno, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pol\u00e1\u010dek", 
        "givenName": "Jakub", 
        "id": "sg:person.013303652053.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013303652053.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Informatics, Masaryk University, Brno, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.10267.32", 
          "name": [
            "Faculty of Informatics, Masaryk University, Brno, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u0160afr\u00e1nek", 
        "givenName": "David", 
        "id": "sg:person.011410250615.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011410250615.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-10-28", 
    "datePublishedReg": "2019-10-28", 
    "description": "Boolean networks offer an elegant way to model the behaviour of complex systems with positive and negative feedback. The long-term behaviour of a Boolean network is characterised by its attractors. Depending on various logical parameters, a Boolean network can exhibit vastly different types of behaviour. Hence, the structure and quality of attractors can undergo a significant change known in systems theory as attractor bifurcation. In this paper, we establish formally the notion of attractor bifurcation for Boolean networks. We propose a semi-symbolic approach to attractor bifurcation analysis based on a parallel algorithm. We use machine-learning techniques to construct a compact, human-readable, representation of the bifurcation analysis results. We demonstrate the method on a set of highly parametrised Boolean networks.", 
    "editor": [
      {
        "familyName": "Ait-Ameur", 
        "givenName": "Yamine", 
        "type": "Person"
      }, 
      {
        "familyName": "Qin", 
        "givenName": "Shengchao", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-32409-4_22", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-32408-7", 
        "978-3-030-32409-4"
      ], 
      "name": "Formal Methods and Software Engineering", 
      "type": "Book"
    }, 
    "keywords": [
      "machine learning techniques", 
      "Boolean networks", 
      "parallel algorithm", 
      "formal analysis", 
      "network", 
      "complex systems", 
      "qualitative long-term behaviour", 
      "elegant way", 
      "logical parameters", 
      "algorithm", 
      "systems theory", 
      "representation", 
      "analysis results", 
      "different types", 
      "set", 
      "bifurcation analysis results", 
      "feedback", 
      "system", 
      "technique", 
      "way", 
      "quality", 
      "method", 
      "attractor bifurcation", 
      "notion", 
      "behavior", 
      "bifurcation analysis", 
      "long-term behavior", 
      "analysis", 
      "results", 
      "attractors", 
      "parameters", 
      "bifurcation", 
      "types", 
      "theory", 
      "structure", 
      "negative feedback", 
      "approach", 
      "changes", 
      "significant changes", 
      "paper"
    ], 
    "name": "Formal Analysis of Qualitative Long-Term Behaviour in Parametrised Boolean Networks", 
    "pagination": "353-369", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1122128588"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-32409-4_22"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-32409-4_22", 
      "https://app.dimensions.ai/details/publication/pub.1122128588"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_355.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-32409-4_22"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32409-4_22'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32409-4_22'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32409-4_22'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32409-4_22'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      23 PREDICATES      65 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-32409-4_22 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nddf95c9704c441bead2330b4f08c62a5
4 schema:datePublished 2019-10-28
5 schema:datePublishedReg 2019-10-28
6 schema:description Boolean networks offer an elegant way to model the behaviour of complex systems with positive and negative feedback. The long-term behaviour of a Boolean network is characterised by its attractors. Depending on various logical parameters, a Boolean network can exhibit vastly different types of behaviour. Hence, the structure and quality of attractors can undergo a significant change known in systems theory as attractor bifurcation. In this paper, we establish formally the notion of attractor bifurcation for Boolean networks. We propose a semi-symbolic approach to attractor bifurcation analysis based on a parallel algorithm. We use machine-learning techniques to construct a compact, human-readable, representation of the bifurcation analysis results. We demonstrate the method on a set of highly parametrised Boolean networks.
7 schema:editor N3efb537960f14b0c83fa8c7d650c99d9
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N5becc20510c649c49c485e30dd6a0937
12 schema:keywords Boolean networks
13 algorithm
14 analysis
15 analysis results
16 approach
17 attractor bifurcation
18 attractors
19 behavior
20 bifurcation
21 bifurcation analysis
22 bifurcation analysis results
23 changes
24 complex systems
25 different types
26 elegant way
27 feedback
28 formal analysis
29 logical parameters
30 long-term behavior
31 machine learning techniques
32 method
33 negative feedback
34 network
35 notion
36 paper
37 parallel algorithm
38 parameters
39 qualitative long-term behaviour
40 quality
41 representation
42 results
43 set
44 significant changes
45 structure
46 system
47 systems theory
48 technique
49 theory
50 types
51 way
52 schema:name Formal Analysis of Qualitative Long-Term Behaviour in Parametrised Boolean Networks
53 schema:pagination 353-369
54 schema:productId N4f26863e5c464016a7cb9eaf673a4aad
55 N637ee0f43b82462c9f6cdab4c619d17b
56 schema:publisher N70d9d8a76812448cb77ecc18669df195
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122128588
58 https://doi.org/10.1007/978-3-030-32409-4_22
59 schema:sdDatePublished 2022-05-10T10:48
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N1ef40719dc6c4b5e80c26c07dc4b060d
62 schema:url https://doi.org/10.1007/978-3-030-32409-4_22
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N1ef40719dc6c4b5e80c26c07dc4b060d schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N3efb537960f14b0c83fa8c7d650c99d9 rdf:first N53b58b6b420a42e582e2a287f0a9e325
69 rdf:rest N6c4b9c2be9614a9194d15d6e7ab1d37a
70 N4f26863e5c464016a7cb9eaf673a4aad schema:name dimensions_id
71 schema:value pub.1122128588
72 rdf:type schema:PropertyValue
73 N53b58b6b420a42e582e2a287f0a9e325 schema:familyName Ait-Ameur
74 schema:givenName Yamine
75 rdf:type schema:Person
76 N5becc20510c649c49c485e30dd6a0937 schema:isbn 978-3-030-32408-7
77 978-3-030-32409-4
78 schema:name Formal Methods and Software Engineering
79 rdf:type schema:Book
80 N637ee0f43b82462c9f6cdab4c619d17b schema:name doi
81 schema:value 10.1007/978-3-030-32409-4_22
82 rdf:type schema:PropertyValue
83 N6c4b9c2be9614a9194d15d6e7ab1d37a rdf:first Nf6c5d0eff9e64ca995d1354fd3ba1714
84 rdf:rest rdf:nil
85 N70d9d8a76812448cb77ecc18669df195 schema:name Springer Nature
86 rdf:type schema:Organisation
87 N72b559edadbc45f48b7dae7065f60b8f rdf:first sg:person.0645117057.83
88 rdf:rest Nbbf667c8ae21468991a08570b3b3c591
89 N9614eae2a5ef4582a1fcd8c0554d4d1a rdf:first sg:person.013303652053.87
90 rdf:rest Nd936edd02dc64a9689dc2ff6b8611fbe
91 Nbbf667c8ae21468991a08570b3b3c591 rdf:first sg:person.016130263073.10
92 rdf:rest N9614eae2a5ef4582a1fcd8c0554d4d1a
93 Nd936edd02dc64a9689dc2ff6b8611fbe rdf:first sg:person.011410250615.43
94 rdf:rest rdf:nil
95 Nddf95c9704c441bead2330b4f08c62a5 rdf:first sg:person.014465763501.21
96 rdf:rest N72b559edadbc45f48b7dae7065f60b8f
97 Nf6c5d0eff9e64ca995d1354fd3ba1714 schema:familyName Qin
98 schema:givenName Shengchao
99 rdf:type schema:Person
100 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
101 schema:name Mathematical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
104 schema:name Pure Mathematics
105 rdf:type schema:DefinedTerm
106 sg:person.011410250615.43 schema:affiliation grid-institutes:grid.10267.32
107 schema:familyName Šafránek
108 schema:givenName David
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011410250615.43
110 rdf:type schema:Person
111 sg:person.013303652053.87 schema:affiliation grid-institutes:grid.10267.32
112 schema:familyName Poláček
113 schema:givenName Jakub
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013303652053.87
115 rdf:type schema:Person
116 sg:person.014465763501.21 schema:affiliation grid-institutes:grid.10267.32
117 schema:familyName Beneš
118 schema:givenName Nikola
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014465763501.21
120 rdf:type schema:Person
121 sg:person.016130263073.10 schema:affiliation grid-institutes:grid.10267.32
122 schema:familyName Pastva
123 schema:givenName Samuel
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016130263073.10
125 rdf:type schema:Person
126 sg:person.0645117057.83 schema:affiliation grid-institutes:grid.10267.32
127 schema:familyName Brim
128 schema:givenName Luboš
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645117057.83
130 rdf:type schema:Person
131 grid-institutes:grid.10267.32 schema:alternateName Faculty of Informatics, Masaryk University, Brno, Czech Republic
132 schema:name Faculty of Informatics, Masaryk University, Brno, Czech Republic
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...