Coidentification of Group-Level Hole Structures in Brain Networks via Hodge Laplacian View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-10-10

AUTHORS

Hyekyoung Lee , Moo K. Chung , Hyejin Kang , Hongyoon Choi , Seunggyun Ha , Youngmin Huh , Eunkyung Kim , Dong Soo Lee

ABSTRACT

One of outstanding issues in brain network analysis is to extract common topological substructure shared by a group of individuals. Recently, methods to detect group-wise modular structure on graph Laplacians have been introduced. From the perspective of algebraic topology, the modules or clusters are the zeroth topology information of a topological space. Higher order topology information can be found in holes. In this study, we extend the concept of graph Laplacian to higher order Hodge Laplacian of weighted networks, and develop a group-level hole identification method via the Stiefel optimization. In experiments, we applied the proposed method to three synthetic data and Alzheimer’s disease neuroimaing initiative (ADNI) database. Experimental results showed that the coidentification of group-level hole structures helped to find the underlying topology information of brain networks that discriminate groups well. More... »

PAGES

674-682

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-32251-9_74

DOI

http://dx.doi.org/10.1007/978-3-030-32251-9_74

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1121617836


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Seoul National University Hospital, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Hyekyoung", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin, Madison, USA", 
          "id": "http://www.grid.ac/institutes/grid.28803.31", 
          "name": [
            "University of Wisconsin, Madison, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "Moo K.", 
        "id": "sg:person.01323327342.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323327342.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Seoul National University, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Hyejin", 
        "id": "sg:person.0675240200.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675240200.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Seoul National University Hospital, Seoul, Republic of Korea", 
            "Seoul National University, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Hongyoon", 
        "id": "sg:person.0631257534.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631257534.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Catholic University of Korea, Seoul ST. Mary\u2019s Hospital, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.414966.8", 
          "name": [
            "The Catholic University of Korea, Seoul ST. Mary\u2019s Hospital, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ha", 
        "givenName": "Seunggyun", 
        "id": "sg:person.01107464404.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107464404.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Seoul National University, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huh", 
        "givenName": "Youngmin", 
        "id": "sg:person.07354113173.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07354113173.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Seoul National University Hospital, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Eunkyung", 
        "id": "sg:person.01001232700.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001232700.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Seoul National University Hospital, Seoul, Republic of Korea", 
            "Seoul National University, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Soo", 
        "id": "sg:person.015617314175.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-10-10", 
    "datePublishedReg": "2019-10-10", 
    "description": "Abstract\n One of outstanding issues in brain network analysis is to extract common topological substructure shared by a group of individuals. Recently, methods to detect group-wise modular structure on graph Laplacians have been introduced. From the perspective of algebraic topology, the modules or clusters are the zeroth topology information of a topological space. Higher order topology information can be found in holes. In this study, we extend the concept of graph Laplacian to higher order Hodge Laplacian of weighted networks, and develop a group-level hole identification method via the Stiefel optimization. In experiments, we applied the proposed method to three synthetic data and Alzheimer\u2019s disease neuroimaing initiative (ADNI) database. Experimental results showed that the coidentification of group-level hole structures helped to find the underlying topology information of brain networks that discriminate groups well.", 
    "editor": [
      {
        "familyName": "Shen", 
        "givenName": "Dinggang", 
        "type": "Person"
      }, 
      {
        "familyName": "Liu", 
        "givenName": "Tianming", 
        "type": "Person"
      }, 
      {
        "familyName": "Peters", 
        "givenName": "Terry M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Staib", 
        "givenName": "Lawrence H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Essert", 
        "givenName": "Caroline", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhou", 
        "givenName": "Sean", 
        "type": "Person"
      }, 
      {
        "familyName": "Yap", 
        "givenName": "Pew-Thian", 
        "type": "Person"
      }, 
      {
        "familyName": "Khan", 
        "givenName": "Ali", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-32251-9_74", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-32250-2", 
        "978-3-030-32251-9"
      ], 
      "name": "Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019", 
      "type": "Book"
    }, 
    "keywords": [
      "Hodge Laplacian", 
      "graph Laplacian", 
      "topology information", 
      "algebraic topology", 
      "topological spaces", 
      "Laplacian", 
      "topological substructures", 
      "hole structure", 
      "synthetic data", 
      "identification method", 
      "brain network analysis", 
      "modular structure", 
      "network", 
      "experimental results", 
      "optimization", 
      "information", 
      "network analysis", 
      "topology", 
      "brain networks", 
      "outstanding issues", 
      "space", 
      "structure", 
      "holes", 
      "module", 
      "Initiative database", 
      "database", 
      "method", 
      "clusters", 
      "substructure", 
      "issues", 
      "group of individuals", 
      "concept", 
      "experiments", 
      "results", 
      "data", 
      "analysis", 
      "perspective", 
      "study", 
      "group", 
      "individuals"
    ], 
    "name": "Coidentification of Group-Level Hole Structures in Brain Networks via Hodge Laplacian", 
    "pagination": "674-682", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1121617836"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-32251-9_74"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-32251-9_74", 
      "https://app.dimensions.ai/details/publication/pub.1121617836"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_116.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-32251-9_74"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32251-9_74'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32251-9_74'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32251-9_74'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32251-9_74'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      22 PREDICATES      66 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-32251-9_74 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 anzsrc-for:08
4 anzsrc-for:0806
5 schema:author N915467cd0c544c658b5d0269bd853666
6 schema:datePublished 2019-10-10
7 schema:datePublishedReg 2019-10-10
8 schema:description Abstract One of outstanding issues in brain network analysis is to extract common topological substructure shared by a group of individuals. Recently, methods to detect group-wise modular structure on graph Laplacians have been introduced. From the perspective of algebraic topology, the modules or clusters are the zeroth topology information of a topological space. Higher order topology information can be found in holes. In this study, we extend the concept of graph Laplacian to higher order Hodge Laplacian of weighted networks, and develop a group-level hole identification method via the Stiefel optimization. In experiments, we applied the proposed method to three synthetic data and Alzheimer’s disease neuroimaing initiative (ADNI) database. Experimental results showed that the coidentification of group-level hole structures helped to find the underlying topology information of brain networks that discriminate groups well.
9 schema:editor Na822af7f62424af490183f32fe526578
10 schema:genre chapter
11 schema:isAccessibleForFree false
12 schema:isPartOf N18b3dcace92b457d96c930249a77459e
13 schema:keywords Hodge Laplacian
14 Initiative database
15 Laplacian
16 algebraic topology
17 analysis
18 brain network analysis
19 brain networks
20 clusters
21 concept
22 data
23 database
24 experimental results
25 experiments
26 graph Laplacian
27 group
28 group of individuals
29 hole structure
30 holes
31 identification method
32 individuals
33 information
34 issues
35 method
36 modular structure
37 module
38 network
39 network analysis
40 optimization
41 outstanding issues
42 perspective
43 results
44 space
45 structure
46 study
47 substructure
48 synthetic data
49 topological spaces
50 topological substructures
51 topology
52 topology information
53 schema:name Coidentification of Group-Level Hole Structures in Brain Networks via Hodge Laplacian
54 schema:pagination 674-682
55 schema:productId N2ccd3e21224f4bc9bd35128abd5f7618
56 N6562d9b6616d428296f07a182a066391
57 schema:publisher N5ef506452c9a4de6b4255a2fae229f62
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121617836
59 https://doi.org/10.1007/978-3-030-32251-9_74
60 schema:sdDatePublished 2022-12-01T06:46
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nc867007a147547888648281db26add19
63 schema:url https://doi.org/10.1007/978-3-030-32251-9_74
64 sgo:license sg:explorer/license/
65 sgo:sdDataset chapters
66 rdf:type schema:Chapter
67 N18b3dcace92b457d96c930249a77459e schema:isbn 978-3-030-32250-2
68 978-3-030-32251-9
69 schema:name Medical Image Computing and Computer Assisted Intervention – MICCAI 2019
70 rdf:type schema:Book
71 N228f4c359f984f8590d0586a4a1fddda rdf:first sg:person.01107464404.68
72 rdf:rest N659847c1f19841d28fc1911f4b8f3902
73 N2ccd3e21224f4bc9bd35128abd5f7618 schema:name doi
74 schema:value 10.1007/978-3-030-32251-9_74
75 rdf:type schema:PropertyValue
76 N383b91e0a13744eea860fcd4f47fae59 rdf:first Nbb5312187f6d4643a108a3396c192453
77 rdf:rest Nbaf0f1743a794fba87766042bf06b35e
78 N4c42756db27d4873bbba8e7d8e46fe55 rdf:first Nebff137487674b5da57c5ff71583595d
79 rdf:rest N383b91e0a13744eea860fcd4f47fae59
80 N5abd7ff57df44f5389af689a61243122 rdf:first sg:person.0675240200.25
81 rdf:rest Nf38b3f6f9d2443a0b3660ae5aeedacff
82 N5ef506452c9a4de6b4255a2fae229f62 schema:name Springer Nature
83 rdf:type schema:Organisation
84 N6562d9b6616d428296f07a182a066391 schema:name dimensions_id
85 schema:value pub.1121617836
86 rdf:type schema:PropertyValue
87 N659847c1f19841d28fc1911f4b8f3902 rdf:first sg:person.07354113173.37
88 rdf:rest N74bce8d0c3fd4aaf98776b4424cb7c02
89 N7049c83ba94041d59f7654f1ce0bac01 rdf:first sg:person.01323327342.11
90 rdf:rest N5abd7ff57df44f5389af689a61243122
91 N74bce8d0c3fd4aaf98776b4424cb7c02 rdf:first sg:person.01001232700.33
92 rdf:rest N75c46a2af521445b8e73e08ca4df8d83
93 N75c46a2af521445b8e73e08ca4df8d83 rdf:first sg:person.015617314175.88
94 rdf:rest rdf:nil
95 N760d07a3a7ee40a0b9749e750f4b4fa8 rdf:first N853616615aa14ed3bb35f19be46998d5
96 rdf:rest N4c42756db27d4873bbba8e7d8e46fe55
97 N7c6c29d18d2e429f8e6837eba076d2fe schema:familyName Peters
98 schema:givenName Terry M.
99 rdf:type schema:Person
100 N81623d698c1e47279883727bb7633f66 schema:affiliation grid-institutes:grid.412484.f
101 schema:familyName Lee
102 schema:givenName Hyekyoung
103 rdf:type schema:Person
104 N853616615aa14ed3bb35f19be46998d5 schema:familyName Staib
105 schema:givenName Lawrence H.
106 rdf:type schema:Person
107 N90c6f7fea8f849f5841ded32fc538076 rdf:first Nabbfb2376236459cb1d88dd3a4733d69
108 rdf:rest Nbf2b7a99a3284e20bf7ec52da85b68ec
109 N915467cd0c544c658b5d0269bd853666 rdf:first N81623d698c1e47279883727bb7633f66
110 rdf:rest N7049c83ba94041d59f7654f1ce0bac01
111 N984dd079fc094336b050edc84b283df6 schema:familyName Yap
112 schema:givenName Pew-Thian
113 rdf:type schema:Person
114 Na822af7f62424af490183f32fe526578 rdf:first Nabe9c2318bba4a0ba75702ac3a4397be
115 rdf:rest N90c6f7fea8f849f5841ded32fc538076
116 Naae1c01d69b0494eb7bb8f37b4663d36 rdf:first Nb221cfc86bff449887b0efec1428ffa3
117 rdf:rest rdf:nil
118 Nabbfb2376236459cb1d88dd3a4733d69 schema:familyName Liu
119 schema:givenName Tianming
120 rdf:type schema:Person
121 Nabe9c2318bba4a0ba75702ac3a4397be schema:familyName Shen
122 schema:givenName Dinggang
123 rdf:type schema:Person
124 Nb221cfc86bff449887b0efec1428ffa3 schema:familyName Khan
125 schema:givenName Ali
126 rdf:type schema:Person
127 Nbaf0f1743a794fba87766042bf06b35e rdf:first N984dd079fc094336b050edc84b283df6
128 rdf:rest Naae1c01d69b0494eb7bb8f37b4663d36
129 Nbb5312187f6d4643a108a3396c192453 schema:familyName Zhou
130 schema:givenName Sean
131 rdf:type schema:Person
132 Nbf2b7a99a3284e20bf7ec52da85b68ec rdf:first N7c6c29d18d2e429f8e6837eba076d2fe
133 rdf:rest N760d07a3a7ee40a0b9749e750f4b4fa8
134 Nc867007a147547888648281db26add19 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 Nebff137487674b5da57c5ff71583595d schema:familyName Essert
137 schema:givenName Caroline
138 rdf:type schema:Person
139 Nf38b3f6f9d2443a0b3660ae5aeedacff rdf:first sg:person.0631257534.28
140 rdf:rest N228f4c359f984f8590d0586a4a1fddda
141 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
142 schema:name Mathematical Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
145 schema:name Pure Mathematics
146 rdf:type schema:DefinedTerm
147 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
148 schema:name Information and Computing Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
151 schema:name Information Systems
152 rdf:type schema:DefinedTerm
153 sg:person.01001232700.33 schema:affiliation grid-institutes:grid.412484.f
154 schema:familyName Kim
155 schema:givenName Eunkyung
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001232700.33
157 rdf:type schema:Person
158 sg:person.01107464404.68 schema:affiliation grid-institutes:grid.414966.8
159 schema:familyName Ha
160 schema:givenName Seunggyun
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107464404.68
162 rdf:type schema:Person
163 sg:person.01323327342.11 schema:affiliation grid-institutes:grid.28803.31
164 schema:familyName Chung
165 schema:givenName Moo K.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323327342.11
167 rdf:type schema:Person
168 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.31501.36
169 schema:familyName Lee
170 schema:givenName Dong Soo
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
172 rdf:type schema:Person
173 sg:person.0631257534.28 schema:affiliation grid-institutes:grid.31501.36
174 schema:familyName Choi
175 schema:givenName Hongyoon
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631257534.28
177 rdf:type schema:Person
178 sg:person.0675240200.25 schema:affiliation grid-institutes:grid.31501.36
179 schema:familyName Kang
180 schema:givenName Hyejin
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675240200.25
182 rdf:type schema:Person
183 sg:person.07354113173.37 schema:affiliation grid-institutes:grid.31501.36
184 schema:familyName Huh
185 schema:givenName Youngmin
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07354113173.37
187 rdf:type schema:Person
188 grid-institutes:grid.28803.31 schema:alternateName University of Wisconsin, Madison, USA
189 schema:name University of Wisconsin, Madison, USA
190 rdf:type schema:Organization
191 grid-institutes:grid.31501.36 schema:alternateName Seoul National University, Seoul, Republic of Korea
192 schema:name Seoul National University Hospital, Seoul, Republic of Korea
193 Seoul National University, Seoul, Republic of Korea
194 rdf:type schema:Organization
195 grid-institutes:grid.412484.f schema:alternateName Seoul National University Hospital, Seoul, Republic of Korea
196 schema:name Seoul National University Hospital, Seoul, Republic of Korea
197 rdf:type schema:Organization
198 grid-institutes:grid.414966.8 schema:alternateName The Catholic University of Korea, Seoul ST. Mary’s Hospital, Seoul, Republic of Korea
199 schema:name The Catholic University of Korea, Seoul ST. Mary’s Hospital, Seoul, Republic of Korea
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...