Coidentification of Group-Level Hole Structures in Brain Networks via Hodge Laplacian View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-10-10

AUTHORS

Hyekyoung Lee , Moo K. Chung , Hyejin Kang , Hongyoon Choi , Seunggyun Ha , Youngmin Huh , Eunkyung Kim , Dong Soo Lee

ABSTRACT

One of outstanding issues in brain network analysis is to extract common topological substructure shared by a group of individuals. Recently, methods to detect group-wise modular structure on graph Laplacians have been introduced. From the perspective of algebraic topology, the modules or clusters are the zeroth topology information of a topological space. Higher order topology information can be found in holes. In this study, we extend the concept of graph Laplacian to higher order Hodge Laplacian of weighted networks, and develop a group-level hole identification method via the Stiefel optimization. In experiments, we applied the proposed method to three synthetic data and Alzheimer’s disease neuroimaing initiative (ADNI) database. Experimental results showed that the coidentification of group-level hole structures helped to find the underlying topology information of brain networks that discriminate groups well. More... »

PAGES

674-682

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-32251-9_74

DOI

http://dx.doi.org/10.1007/978-3-030-32251-9_74

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1121617836


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Seoul National University Hospital, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Hyekyoung", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin, Madison, USA", 
          "id": "http://www.grid.ac/institutes/grid.28803.31", 
          "name": [
            "University of Wisconsin, Madison, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "Moo K.", 
        "id": "sg:person.01323327342.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323327342.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Seoul National University, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Hyejin", 
        "id": "sg:person.0675240200.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675240200.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Seoul National University Hospital, Seoul, Republic of Korea", 
            "Seoul National University, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Hongyoon", 
        "id": "sg:person.0631257534.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631257534.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Catholic University of Korea, Seoul ST. Mary\u2019s Hospital, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.414966.8", 
          "name": [
            "The Catholic University of Korea, Seoul ST. Mary\u2019s Hospital, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ha", 
        "givenName": "Seunggyun", 
        "id": "sg:person.01107464404.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107464404.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Seoul National University, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huh", 
        "givenName": "Youngmin", 
        "id": "sg:person.07354113173.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07354113173.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Seoul National University Hospital, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Eunkyung", 
        "id": "sg:person.01001232700.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001232700.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Seoul National University Hospital, Seoul, Republic of Korea", 
            "Seoul National University, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Soo", 
        "id": "sg:person.015617314175.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-10-10", 
    "datePublishedReg": "2019-10-10", 
    "description": "Abstract\n One of outstanding issues in brain network analysis is to extract common topological substructure shared by a group of individuals. Recently, methods to detect group-wise modular structure on graph Laplacians have been introduced. From the perspective of algebraic topology, the modules or clusters are the zeroth topology information of a topological space. Higher order topology information can be found in holes. In this study, we extend the concept of graph Laplacian to higher order Hodge Laplacian of weighted networks, and develop a group-level hole identification method via the Stiefel optimization. In experiments, we applied the proposed method to three synthetic data and Alzheimer\u2019s disease neuroimaing initiative (ADNI) database. Experimental results showed that the coidentification of group-level hole structures helped to find the underlying topology information of brain networks that discriminate groups well.", 
    "editor": [
      {
        "familyName": "Shen", 
        "givenName": "Dinggang", 
        "type": "Person"
      }, 
      {
        "familyName": "Liu", 
        "givenName": "Tianming", 
        "type": "Person"
      }, 
      {
        "familyName": "Peters", 
        "givenName": "Terry M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Staib", 
        "givenName": "Lawrence H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Essert", 
        "givenName": "Caroline", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhou", 
        "givenName": "Sean", 
        "type": "Person"
      }, 
      {
        "familyName": "Yap", 
        "givenName": "Pew-Thian", 
        "type": "Person"
      }, 
      {
        "familyName": "Khan", 
        "givenName": "Ali", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-32251-9_74", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-32250-2", 
        "978-3-030-32251-9"
      ], 
      "name": "Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019", 
      "type": "Book"
    }, 
    "keywords": [
      "Hodge Laplacian", 
      "graph Laplacian", 
      "topology information", 
      "algebraic topology", 
      "topological spaces", 
      "Laplacian", 
      "topological substructures", 
      "hole structure", 
      "synthetic data", 
      "identification method", 
      "brain network analysis", 
      "modular structure", 
      "network", 
      "experimental results", 
      "optimization", 
      "information", 
      "network analysis", 
      "topology", 
      "brain networks", 
      "outstanding issues", 
      "space", 
      "structure", 
      "holes", 
      "module", 
      "Initiative database", 
      "database", 
      "method", 
      "clusters", 
      "substructure", 
      "issues", 
      "group of individuals", 
      "concept", 
      "experiments", 
      "results", 
      "data", 
      "analysis", 
      "perspective", 
      "study", 
      "group", 
      "individuals"
    ], 
    "name": "Coidentification of Group-Level Hole Structures in Brain Networks via Hodge Laplacian", 
    "pagination": "674-682", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1121617836"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-32251-9_74"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-32251-9_74", 
      "https://app.dimensions.ai/details/publication/pub.1121617836"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_352.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-32251-9_74"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32251-9_74'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32251-9_74'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32251-9_74'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-32251-9_74'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      22 PREDICATES      66 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-32251-9_74 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 anzsrc-for:08
4 anzsrc-for:0806
5 schema:author N5ad4d1ab418d4ddd8fdea6fadbae5447
6 schema:datePublished 2019-10-10
7 schema:datePublishedReg 2019-10-10
8 schema:description Abstract One of outstanding issues in brain network analysis is to extract common topological substructure shared by a group of individuals. Recently, methods to detect group-wise modular structure on graph Laplacians have been introduced. From the perspective of algebraic topology, the modules or clusters are the zeroth topology information of a topological space. Higher order topology information can be found in holes. In this study, we extend the concept of graph Laplacian to higher order Hodge Laplacian of weighted networks, and develop a group-level hole identification method via the Stiefel optimization. In experiments, we applied the proposed method to three synthetic data and Alzheimer’s disease neuroimaing initiative (ADNI) database. Experimental results showed that the coidentification of group-level hole structures helped to find the underlying topology information of brain networks that discriminate groups well.
9 schema:editor N752e095d1ed84f83ab05ec41dd15766e
10 schema:genre chapter
11 schema:isAccessibleForFree false
12 schema:isPartOf N5ae42f43a57d4ec98a7aa5b5475998da
13 schema:keywords Hodge Laplacian
14 Initiative database
15 Laplacian
16 algebraic topology
17 analysis
18 brain network analysis
19 brain networks
20 clusters
21 concept
22 data
23 database
24 experimental results
25 experiments
26 graph Laplacian
27 group
28 group of individuals
29 hole structure
30 holes
31 identification method
32 individuals
33 information
34 issues
35 method
36 modular structure
37 module
38 network
39 network analysis
40 optimization
41 outstanding issues
42 perspective
43 results
44 space
45 structure
46 study
47 substructure
48 synthetic data
49 topological spaces
50 topological substructures
51 topology
52 topology information
53 schema:name Coidentification of Group-Level Hole Structures in Brain Networks via Hodge Laplacian
54 schema:pagination 674-682
55 schema:productId N09a05178c1a54f168c841c2a8c75d217
56 N637e344dc8b6484b9f768ef765fa9831
57 schema:publisher N214928f0ed8e4689aabdf1516cd0ce66
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121617836
59 https://doi.org/10.1007/978-3-030-32251-9_74
60 schema:sdDatePublished 2022-10-01T06:57
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nc7e8c761d954499aabd8b8388c3833d3
63 schema:url https://doi.org/10.1007/978-3-030-32251-9_74
64 sgo:license sg:explorer/license/
65 sgo:sdDataset chapters
66 rdf:type schema:Chapter
67 N026599ce03df40a4ada5d81d29e976d4 rdf:first sg:person.01001232700.33
68 rdf:rest N31f7b259929a49fe845b6156d0c178cd
69 N061ade8e789f4426946bffc1c80cdaa4 rdf:first Nc3e34ee9ac5d4a4cad964b4df5e60e12
70 rdf:rest N18899f6d8e11494aa164adfb73477c82
71 N09a05178c1a54f168c841c2a8c75d217 schema:name doi
72 schema:value 10.1007/978-3-030-32251-9_74
73 rdf:type schema:PropertyValue
74 N124e397003a445f78443ec8b6b275092 rdf:first Ne5828272fb544ba8b35a101d77875090
75 rdf:rest N6abbd83b733647e1a63b38ee3265a24a
76 N18899f6d8e11494aa164adfb73477c82 rdf:first Nc5b3babb4a8a4b478565bda77c1fd3f8
77 rdf:rest N124e397003a445f78443ec8b6b275092
78 N214928f0ed8e4689aabdf1516cd0ce66 schema:name Springer Nature
79 rdf:type schema:Organisation
80 N248890fade5c43f9b63424ed55728a0e schema:familyName Khan
81 schema:givenName Ali
82 rdf:type schema:Person
83 N250e576cd6ff4debabb9312eba1390bd rdf:first sg:person.07354113173.37
84 rdf:rest N026599ce03df40a4ada5d81d29e976d4
85 N31f7b259929a49fe845b6156d0c178cd rdf:first sg:person.015617314175.88
86 rdf:rest rdf:nil
87 N335b9a0c22e4494e8bb4595d89a9a7f1 schema:familyName Peters
88 schema:givenName Terry M.
89 rdf:type schema:Person
90 N4adbbe5e31e14cb2b569def50dce6c20 rdf:first N248890fade5c43f9b63424ed55728a0e
91 rdf:rest rdf:nil
92 N5ad4d1ab418d4ddd8fdea6fadbae5447 rdf:first Nc350769ff16f4fd2b915ae161b86b550
93 rdf:rest N9c83b519a8dd40218730b165c1b9c5c4
94 N5ae42f43a57d4ec98a7aa5b5475998da schema:isbn 978-3-030-32250-2
95 978-3-030-32251-9
96 schema:name Medical Image Computing and Computer Assisted Intervention – MICCAI 2019
97 rdf:type schema:Book
98 N637e344dc8b6484b9f768ef765fa9831 schema:name dimensions_id
99 schema:value pub.1121617836
100 rdf:type schema:PropertyValue
101 N65f781ade1a74abca02a88bd3f076ac1 rdf:first sg:person.0675240200.25
102 rdf:rest N68fe1e1aa0f849f6ad3053076b535b3b
103 N6772101948924141b0abc85d4f60ca9e schema:familyName Liu
104 schema:givenName Tianming
105 rdf:type schema:Person
106 N68fe1e1aa0f849f6ad3053076b535b3b rdf:first sg:person.0631257534.28
107 rdf:rest Na396bf23299c4dd990ebb02dd29ae6ba
108 N6abbd83b733647e1a63b38ee3265a24a rdf:first N9c3902e1c5f4415dbdb333b70592c2c3
109 rdf:rest N4adbbe5e31e14cb2b569def50dce6c20
110 N752e095d1ed84f83ab05ec41dd15766e rdf:first Nf9da5a3fe2e349a3a502d87aa01b2f9c
111 rdf:rest Naea061abbfda4351b314eb699ba88483
112 N9c3902e1c5f4415dbdb333b70592c2c3 schema:familyName Yap
113 schema:givenName Pew-Thian
114 rdf:type schema:Person
115 N9c83b519a8dd40218730b165c1b9c5c4 rdf:first sg:person.01323327342.11
116 rdf:rest N65f781ade1a74abca02a88bd3f076ac1
117 Na396bf23299c4dd990ebb02dd29ae6ba rdf:first sg:person.01107464404.68
118 rdf:rest N250e576cd6ff4debabb9312eba1390bd
119 Naea061abbfda4351b314eb699ba88483 rdf:first N6772101948924141b0abc85d4f60ca9e
120 rdf:rest Ncdeae0391c4d46d1a05a2cc8c74e5082
121 Nc350769ff16f4fd2b915ae161b86b550 schema:affiliation grid-institutes:grid.412484.f
122 schema:familyName Lee
123 schema:givenName Hyekyoung
124 rdf:type schema:Person
125 Nc3e34ee9ac5d4a4cad964b4df5e60e12 schema:familyName Staib
126 schema:givenName Lawrence H.
127 rdf:type schema:Person
128 Nc5b3babb4a8a4b478565bda77c1fd3f8 schema:familyName Essert
129 schema:givenName Caroline
130 rdf:type schema:Person
131 Nc7e8c761d954499aabd8b8388c3833d3 schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 Ncdeae0391c4d46d1a05a2cc8c74e5082 rdf:first N335b9a0c22e4494e8bb4595d89a9a7f1
134 rdf:rest N061ade8e789f4426946bffc1c80cdaa4
135 Ne5828272fb544ba8b35a101d77875090 schema:familyName Zhou
136 schema:givenName Sean
137 rdf:type schema:Person
138 Nf9da5a3fe2e349a3a502d87aa01b2f9c schema:familyName Shen
139 schema:givenName Dinggang
140 rdf:type schema:Person
141 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
142 schema:name Mathematical Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
145 schema:name Pure Mathematics
146 rdf:type schema:DefinedTerm
147 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
148 schema:name Information and Computing Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
151 schema:name Information Systems
152 rdf:type schema:DefinedTerm
153 sg:person.01001232700.33 schema:affiliation grid-institutes:grid.412484.f
154 schema:familyName Kim
155 schema:givenName Eunkyung
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001232700.33
157 rdf:type schema:Person
158 sg:person.01107464404.68 schema:affiliation grid-institutes:grid.414966.8
159 schema:familyName Ha
160 schema:givenName Seunggyun
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107464404.68
162 rdf:type schema:Person
163 sg:person.01323327342.11 schema:affiliation grid-institutes:grid.28803.31
164 schema:familyName Chung
165 schema:givenName Moo K.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323327342.11
167 rdf:type schema:Person
168 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.31501.36
169 schema:familyName Lee
170 schema:givenName Dong Soo
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
172 rdf:type schema:Person
173 sg:person.0631257534.28 schema:affiliation grid-institutes:grid.31501.36
174 schema:familyName Choi
175 schema:givenName Hongyoon
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631257534.28
177 rdf:type schema:Person
178 sg:person.0675240200.25 schema:affiliation grid-institutes:grid.31501.36
179 schema:familyName Kang
180 schema:givenName Hyejin
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675240200.25
182 rdf:type schema:Person
183 sg:person.07354113173.37 schema:affiliation grid-institutes:grid.31501.36
184 schema:familyName Huh
185 schema:givenName Youngmin
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07354113173.37
187 rdf:type schema:Person
188 grid-institutes:grid.28803.31 schema:alternateName University of Wisconsin, Madison, USA
189 schema:name University of Wisconsin, Madison, USA
190 rdf:type schema:Organization
191 grid-institutes:grid.31501.36 schema:alternateName Seoul National University, Seoul, Republic of Korea
192 schema:name Seoul National University Hospital, Seoul, Republic of Korea
193 Seoul National University, Seoul, Republic of Korea
194 rdf:type schema:Organization
195 grid-institutes:grid.412484.f schema:alternateName Seoul National University Hospital, Seoul, Republic of Korea
196 schema:name Seoul National University Hospital, Seoul, Republic of Korea
197 rdf:type schema:Organization
198 grid-institutes:grid.414966.8 schema:alternateName The Catholic University of Korea, Seoul ST. Mary’s Hospital, Seoul, Republic of Korea
199 schema:name The Catholic University of Korea, Seoul ST. Mary’s Hospital, Seoul, Republic of Korea
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...