An Immunological Algorithm for Graph Modularity Optimization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-08-30

AUTHORS

A. G. Spampinato , R. A. Scollo , S. Cavallaro , M. Pavone , V. Cutello

ABSTRACT

Complex networks constitute the backbone of complex systems. They represent a powerful interpretation tool for describing and analyzing many different kinds of systems from biology, economics, engineering and social networks. Uncovering the community structure exhibited by real networks is a crucial step towards a better understanding of complex systems, revealing the internal organization of nodes. However, existing algorithms in the literature up-to-date present several crucial issues, and the question of how good an algorithm is, with respect to others, is still open. Recently, Newman [18] suggested modularity as a natural measure of the goodness of network community decompositions. Here we propose an implementation of an Immunological Algorithm, a population based computational systems inspired by the immune system and its features, to perform community detection on the methods of modularity maximization. The reliability and efficiency of the proposed algorithm has been validating by comparing it with Louvain algorithm one of the fastest and the popular algorithm based on a multiscale modularity optimization scheme. More... »

PAGES

235-247

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-29933-0_20

DOI

http://dx.doi.org/10.1007/978-3-030-29933-0_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1120688155


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Biomedical Reasearch and Innovation, Italian National Research Council, Via P. Gaifami 18, 95126, Catania, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5326.2", 
          "name": [
            "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy", 
            "Institute for Biomedical Reasearch and Innovation, Italian National Research Council, Via P. Gaifami 18, 95126, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spampinato", 
        "givenName": "A. G.", 
        "id": "sg:person.016213657203.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016213657203.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scollo", 
        "givenName": "R. A.", 
        "id": "sg:person.016661443761.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661443761.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Biomedical Reasearch and Innovation, Italian National Research Council, Via P. Gaifami 18, 95126, Catania, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5326.2", 
          "name": [
            "Institute for Biomedical Reasearch and Innovation, Italian National Research Council, Via P. Gaifami 18, 95126, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cavallaro", 
        "givenName": "S.", 
        "id": "sg:person.01044602671.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044602671.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pavone", 
        "givenName": "M.", 
        "id": "sg:person.07350620665.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350620665.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cutello", 
        "givenName": "V.", 
        "id": "sg:person.013504603243.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013504603243.51"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-08-30", 
    "datePublishedReg": "2019-08-30", 
    "description": "Complex networks constitute the backbone of complex systems. They represent a powerful interpretation tool for describing and analyzing many different kinds of systems from biology, economics, engineering and social networks. Uncovering the community structure exhibited by real networks is a crucial step towards a better understanding of complex systems, revealing the internal organization of nodes. However, existing algorithms in the literature up-to-date present several crucial issues, and the question of how good an algorithm is, with respect to others, is still open. Recently, Newman [18] suggested modularity as a natural measure of the goodness of network community decompositions. Here we propose an implementation of an Immunological Algorithm, a population based computational systems inspired by the immune system and its features, to perform community detection on the methods of modularity maximization. The reliability and efficiency of the proposed algorithm has been validating by comparing it with Louvain algorithm one of the fastest and the popular algorithm based on a multiscale modularity optimization scheme.", 
    "editor": [
      {
        "familyName": "Ju", 
        "givenName": "Zhaojie", 
        "type": "Person"
      }, 
      {
        "familyName": "Yang", 
        "givenName": "Longzhi", 
        "type": "Person"
      }, 
      {
        "familyName": "Yang", 
        "givenName": "Chenguang", 
        "type": "Person"
      }, 
      {
        "familyName": "Gegov", 
        "givenName": "Alexander", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhou", 
        "givenName": "Dalin", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-29933-0_20", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-29932-3", 
        "978-3-030-29933-0"
      ], 
      "name": "Advances in Computational Intelligence Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "immunological algorithm", 
      "complex systems", 
      "community detection", 
      "modularity optimization", 
      "computational systems", 
      "algorithm one", 
      "popular algorithms", 
      "community decomposition", 
      "modularity maximization", 
      "optimization scheme", 
      "real networks", 
      "social networks", 
      "natural measure", 
      "algorithm", 
      "complex networks", 
      "network", 
      "interpretation tools", 
      "crucial issue", 
      "different kinds", 
      "crucial step", 
      "system", 
      "modularity", 
      "nodes", 
      "optimization", 
      "implementation", 
      "maximization", 
      "scheme", 
      "goodness", 
      "tool", 
      "engineering", 
      "reliability", 
      "detection", 
      "decomposition", 
      "features", 
      "issues", 
      "internal organization", 
      "kind", 
      "efficiency", 
      "step", 
      "organization", 
      "one", 
      "method", 
      "Newman", 
      "structure", 
      "respect", 
      "community structure", 
      "backbone", 
      "better understanding", 
      "literature", 
      "measures", 
      "questions", 
      "economics", 
      "understanding", 
      "biology", 
      "date", 
      "population", 
      "immune system", 
      "powerful interpretation tool", 
      "network community decompositions", 
      "Louvain algorithm one", 
      "multiscale modularity optimization scheme", 
      "modularity optimization scheme", 
      "Graph Modularity Optimization"
    ], 
    "name": "An Immunological Algorithm for Graph Modularity Optimization", 
    "pagination": "235-247", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1120688155"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-29933-0_20"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-29933-0_20", 
      "https://app.dimensions.ai/details/publication/pub.1120688155"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_237.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-29933-0_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-29933-0_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-29933-0_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-29933-0_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-29933-0_20'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      23 PREDICATES      90 URIs      81 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-29933-0_20 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:08
4 anzsrc-for:0802
5 schema:author Neac947ab6c404961b93df9415aad4392
6 schema:datePublished 2019-08-30
7 schema:datePublishedReg 2019-08-30
8 schema:description Complex networks constitute the backbone of complex systems. They represent a powerful interpretation tool for describing and analyzing many different kinds of systems from biology, economics, engineering and social networks. Uncovering the community structure exhibited by real networks is a crucial step towards a better understanding of complex systems, revealing the internal organization of nodes. However, existing algorithms in the literature up-to-date present several crucial issues, and the question of how good an algorithm is, with respect to others, is still open. Recently, Newman [18] suggested modularity as a natural measure of the goodness of network community decompositions. Here we propose an implementation of an Immunological Algorithm, a population based computational systems inspired by the immune system and its features, to perform community detection on the methods of modularity maximization. The reliability and efficiency of the proposed algorithm has been validating by comparing it with Louvain algorithm one of the fastest and the popular algorithm based on a multiscale modularity optimization scheme.
9 schema:editor N6656280f4b2c4b89843d718000176c6a
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N86187ce5dd5d47609bc86e289e94042c
14 schema:keywords Graph Modularity Optimization
15 Louvain algorithm one
16 Newman
17 algorithm
18 algorithm one
19 backbone
20 better understanding
21 biology
22 community decomposition
23 community detection
24 community structure
25 complex networks
26 complex systems
27 computational systems
28 crucial issue
29 crucial step
30 date
31 decomposition
32 detection
33 different kinds
34 economics
35 efficiency
36 engineering
37 features
38 goodness
39 immune system
40 immunological algorithm
41 implementation
42 internal organization
43 interpretation tools
44 issues
45 kind
46 literature
47 maximization
48 measures
49 method
50 modularity
51 modularity maximization
52 modularity optimization
53 modularity optimization scheme
54 multiscale modularity optimization scheme
55 natural measure
56 network
57 network community decompositions
58 nodes
59 one
60 optimization
61 optimization scheme
62 organization
63 popular algorithms
64 population
65 powerful interpretation tool
66 questions
67 real networks
68 reliability
69 respect
70 scheme
71 social networks
72 step
73 structure
74 system
75 tool
76 understanding
77 schema:name An Immunological Algorithm for Graph Modularity Optimization
78 schema:pagination 235-247
79 schema:productId N0cb67c7c258147079e52a3d0a7471a90
80 N15ac245157bc4b5aa74d4267c9cede4e
81 schema:publisher Nd880cbbe17c14bcfbe324885a64fb220
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120688155
83 https://doi.org/10.1007/978-3-030-29933-0_20
84 schema:sdDatePublished 2022-01-01T19:14
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N1918cce3dbb54c74993e1724c8b6c7b6
87 schema:url https://doi.org/10.1007/978-3-030-29933-0_20
88 sgo:license sg:explorer/license/
89 sgo:sdDataset chapters
90 rdf:type schema:Chapter
91 N07a4f0c581334b2582df7c636ef37adb rdf:first sg:person.016661443761.18
92 rdf:rest N0e9f6199ced24ea180099c883022a82b
93 N0816834dddf341679dddad58f2447ec1 schema:familyName Yang
94 schema:givenName Longzhi
95 rdf:type schema:Person
96 N0cb67c7c258147079e52a3d0a7471a90 schema:name dimensions_id
97 schema:value pub.1120688155
98 rdf:type schema:PropertyValue
99 N0e9f6199ced24ea180099c883022a82b rdf:first sg:person.01044602671.14
100 rdf:rest N98a0d02dbdfd475eb08b433b171239e0
101 N15ac245157bc4b5aa74d4267c9cede4e schema:name doi
102 schema:value 10.1007/978-3-030-29933-0_20
103 rdf:type schema:PropertyValue
104 N1918cce3dbb54c74993e1724c8b6c7b6 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N36fe34b6b776468caae84f7f1bba3b2a rdf:first N75c6519b4d4d4fb5a94b40b651759267
107 rdf:rest N792178f8f24143f0b79ce4aa6aa548aa
108 N3e48f4eac5a54e7b94c77607ece028a6 schema:familyName Ju
109 schema:givenName Zhaojie
110 rdf:type schema:Person
111 N6656280f4b2c4b89843d718000176c6a rdf:first N3e48f4eac5a54e7b94c77607ece028a6
112 rdf:rest Nfd447affc37d4c74bdf9785203fb19f8
113 N6f929baf6aa94fceb07451d30f49559a rdf:first Nce0c2d6c71d14bc982e1ff4633f2a138
114 rdf:rest N36fe34b6b776468caae84f7f1bba3b2a
115 N75c6519b4d4d4fb5a94b40b651759267 schema:familyName Gegov
116 schema:givenName Alexander
117 rdf:type schema:Person
118 N792178f8f24143f0b79ce4aa6aa548aa rdf:first N7fd3ecff5d2a456d94022880e7e71873
119 rdf:rest rdf:nil
120 N7fd3ecff5d2a456d94022880e7e71873 schema:familyName Zhou
121 schema:givenName Dalin
122 rdf:type schema:Person
123 N86187ce5dd5d47609bc86e289e94042c schema:isbn 978-3-030-29932-3
124 978-3-030-29933-0
125 schema:name Advances in Computational Intelligence Systems
126 rdf:type schema:Book
127 N98a0d02dbdfd475eb08b433b171239e0 rdf:first sg:person.07350620665.82
128 rdf:rest Nead4f506fa204d248b9adc9469638140
129 Nce0c2d6c71d14bc982e1ff4633f2a138 schema:familyName Yang
130 schema:givenName Chenguang
131 rdf:type schema:Person
132 Nd880cbbe17c14bcfbe324885a64fb220 schema:name Springer Nature
133 rdf:type schema:Organisation
134 Neac947ab6c404961b93df9415aad4392 rdf:first sg:person.016213657203.01
135 rdf:rest N07a4f0c581334b2582df7c636ef37adb
136 Nead4f506fa204d248b9adc9469638140 rdf:first sg:person.013504603243.51
137 rdf:rest rdf:nil
138 Nfd447affc37d4c74bdf9785203fb19f8 rdf:first N0816834dddf341679dddad58f2447ec1
139 rdf:rest N6f929baf6aa94fceb07451d30f49559a
140 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
141 schema:name Mathematical Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
144 schema:name Applied Mathematics
145 rdf:type schema:DefinedTerm
146 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
147 schema:name Information and Computing Sciences
148 rdf:type schema:DefinedTerm
149 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
150 schema:name Computation Theory and Mathematics
151 rdf:type schema:DefinedTerm
152 sg:person.01044602671.14 schema:affiliation grid-institutes:grid.5326.2
153 schema:familyName Cavallaro
154 schema:givenName S.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044602671.14
156 rdf:type schema:Person
157 sg:person.013504603243.51 schema:affiliation grid-institutes:grid.8158.4
158 schema:familyName Cutello
159 schema:givenName V.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013504603243.51
161 rdf:type schema:Person
162 sg:person.016213657203.01 schema:affiliation grid-institutes:grid.5326.2
163 schema:familyName Spampinato
164 schema:givenName A. G.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016213657203.01
166 rdf:type schema:Person
167 sg:person.016661443761.18 schema:affiliation grid-institutes:grid.8158.4
168 schema:familyName Scollo
169 schema:givenName R. A.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661443761.18
171 rdf:type schema:Person
172 sg:person.07350620665.82 schema:affiliation grid-institutes:grid.8158.4
173 schema:familyName Pavone
174 schema:givenName M.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350620665.82
176 rdf:type schema:Person
177 grid-institutes:grid.5326.2 schema:alternateName Institute for Biomedical Reasearch and Innovation, Italian National Research Council, Via P. Gaifami 18, 95126, Catania, Italy
178 schema:name Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
179 Institute for Biomedical Reasearch and Innovation, Italian National Research Council, Via P. Gaifami 18, 95126, Catania, Italy
180 rdf:type schema:Organization
181 grid-institutes:grid.8158.4 schema:alternateName Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
182 schema:name Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...