Ontology type: schema:Chapter
2019-07-24
AUTHORSSedigheh Zolaktaf , Frits Dannenberg , Erik Winfree , Alexandre Bouchard-Côté , Mark Schmidt , Anne Condon
ABSTRACTNucleic acid kinetic simulators aim to predict the kinetics of interacting nucleic acid strands. Many simulators model the kinetics of interacting nucleic acid strands as continuous-time Markov chains (CTMCs). States of the CTMCs represent a collection of secondary structures, and transitions between the states correspond to the forming or breaking of base pairs and are determined by a nucleic acid kinetic model. The number of states these CTMCs can form may be exponentially large in the length of the strands, making two important tasks challenging, namely, mean first passage time (MFPT) estimation and parameter estimation for kinetic models based on MFPTs. Gillespie’s stochastic simulation algorithm (SSA) is widely used to analyze nucleic acid folding kinetics, but could be computationally expensive for reactions whose CTMC has a large state space or for slow reactions. It could also be expensive for arbitrary parameter sets that occur in parameter estimation. Our work addresses these two challenging tasks, in the full state space of all non-pseudoknotted secondary structures of each reaction. In the first task, we show how to use a reduced variance stochastic simulation algorithm (RVSSA), which is adapted from SSA, to estimate the MFPT of a reaction’s CTMC. In the second task, we estimate model parameters based on MFPTs. To this end, first, we show how to use a generalized method of moments (GMM) approach, where we minimize a squared norm of moment functions that we formulate based on experimental and estimated MFPTs. Second, to speed up parameter estimation, we introduce a fixed path ensemble inference (FPEI) approach, that we adapt from RVSSA. We implement and evaluate RVSSA and FPEI using the Multistrand kinetic simulator. In our experiments on a dataset of DNA reactions, FPEI speeds up parameter estimation compared to inference using SSA, by more than a factor of three for slow reactions. Also, for reactions with large state spaces, it speeds up parameter estimation by more than a factor of two. More... »
PAGES80-99
DNA Computing and Molecular Programming
ISBN
978-3-030-26806-0
978-3-030-26807-7
http://scigraph.springernature.com/pub.10.1007/978-3-030-26807-7_5
DOIhttp://dx.doi.org/10.1007/978-3-030-26807-7_5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1119950686
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of British Columbia, Vancouver, BC, Canada",
"id": "http://www.grid.ac/institutes/grid.17091.3e",
"name": [
"University of British Columbia, Vancouver, BC, Canada"
],
"type": "Organization"
},
"familyName": "Zolaktaf",
"givenName": "Sedigheh",
"id": "sg:person.011515307024.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011515307024.26"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "California Institute of Technology, Pasadena, CA, USA",
"id": "http://www.grid.ac/institutes/grid.20861.3d",
"name": [
"California Institute of Technology, Pasadena, CA, USA"
],
"type": "Organization"
},
"familyName": "Dannenberg",
"givenName": "Frits",
"id": "sg:person.010040156213.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010040156213.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "California Institute of Technology, Pasadena, CA, USA",
"id": "http://www.grid.ac/institutes/grid.20861.3d",
"name": [
"California Institute of Technology, Pasadena, CA, USA"
],
"type": "Organization"
},
"familyName": "Winfree",
"givenName": "Erik",
"id": "sg:person.01302761701.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302761701.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of British Columbia, Vancouver, BC, Canada",
"id": "http://www.grid.ac/institutes/grid.17091.3e",
"name": [
"University of British Columbia, Vancouver, BC, Canada"
],
"type": "Organization"
},
"familyName": "Bouchard-C\u00f4t\u00e9",
"givenName": "Alexandre",
"id": "sg:person.01264404447.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264404447.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of British Columbia, Vancouver, BC, Canada",
"id": "http://www.grid.ac/institutes/grid.17091.3e",
"name": [
"University of British Columbia, Vancouver, BC, Canada"
],
"type": "Organization"
},
"familyName": "Schmidt",
"givenName": "Mark",
"id": "sg:person.015300571424.99",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015300571424.99"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of British Columbia, Vancouver, BC, Canada",
"id": "http://www.grid.ac/institutes/grid.17091.3e",
"name": [
"University of British Columbia, Vancouver, BC, Canada"
],
"type": "Organization"
},
"familyName": "Condon",
"givenName": "Anne",
"id": "sg:person.01214547071.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214547071.42"
],
"type": "Person"
}
],
"datePublished": "2019-07-24",
"datePublishedReg": "2019-07-24",
"description": "Nucleic acid kinetic simulators aim to predict the kinetics of interacting nucleic acid strands. Many simulators model the kinetics of interacting nucleic acid strands as continuous-time Markov chains (CTMCs). States of the CTMCs represent a collection of secondary structures, and transitions between the states correspond to the forming or breaking of base pairs and are determined by a nucleic acid kinetic model. The number of states these CTMCs can form may be exponentially large in the length of the strands, making two important tasks challenging, namely, mean first passage time (MFPT) estimation and parameter estimation for kinetic models based on MFPTs. Gillespie\u2019s stochastic simulation algorithm (SSA) is widely used to analyze nucleic acid folding kinetics, but could be computationally expensive for reactions whose CTMC has a large state space or for slow reactions. It could also be expensive for arbitrary parameter sets that occur in parameter estimation. Our work addresses these two challenging tasks, in the full state space of all non-pseudoknotted secondary structures of each reaction. In the first task, we show how to use a reduced variance stochastic simulation algorithm (RVSSA), which is adapted from SSA, to estimate the MFPT of a reaction\u2019s CTMC. In the second task, we estimate model parameters based on MFPTs. To this end, first, we show how to use a generalized method of moments (GMM) approach, where we minimize a squared norm of moment functions that we formulate based on experimental and estimated MFPTs. Second, to speed up parameter estimation, we introduce a fixed path ensemble inference (FPEI) approach, that we adapt from RVSSA. We implement and evaluate RVSSA and FPEI using the Multistrand kinetic simulator. In our experiments on a dataset of DNA reactions, FPEI speeds up parameter estimation compared to inference using SSA, by more than a factor of three for slow reactions. Also, for reactions with large state spaces, it speeds up parameter estimation by more than a factor of two.",
"editor": [
{
"familyName": "Thachuk",
"givenName": "Chris",
"type": "Person"
},
{
"familyName": "Liu",
"givenName": "Yan",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-26807-7_5",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-26806-0",
"978-3-030-26807-7"
],
"name": "DNA Computing and Molecular Programming",
"type": "Book"
},
"keywords": [
"continuous-time Markov chain",
"stochastic simulation algorithm",
"parameter estimation",
"large state space",
"state space",
"Markov chain",
"simulation algorithm",
"Gillespie's stochastic simulation algorithm",
"efficient parameter estimation",
"time Markov chain",
"full state space",
"kinetic simulator",
"moment approach",
"model parameters",
"squared norm",
"number of states",
"parameter sets",
"inference approach",
"MFPT",
"generalized method",
"estimation",
"moment functions",
"space",
"time estimation",
"algorithm",
"model",
"simulator",
"inference",
"breaking",
"important task",
"challenging task",
"approach",
"kinetic model",
"state",
"Modeled",
"parameters",
"structure",
"set",
"transition",
"norms",
"chain",
"function",
"task",
"number",
"slow reaction",
"first task",
"pairs",
"dataset",
"work",
"experiments",
"length",
"second task",
"nucleic acid strands",
"kinetics",
"end",
"collection",
"DNA reactions",
"factors",
"strands",
"reaction",
"secondary structure",
"base pairs",
"method",
"nucleic acids",
"acid"
],
"name": "Efficient Parameter Estimation for DNA Kinetics Modeled as Continuous-Time Markov Chains",
"pagination": "80-99",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1119950686"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-26807-7_5"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-26807-7_5",
"https://app.dimensions.ai/details/publication/pub.1119950686"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:44",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_262.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-26807-7_5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-26807-7_5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-26807-7_5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-26807-7_5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-26807-7_5'
This table displays all metadata directly associated to this object as RDF triples.
168 TRIPLES
23 PREDICATES
90 URIs
83 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-26807-7_5 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0104 |
3 | ″ | schema:author | N457412452e324c538782db3648a5ddd0 |
4 | ″ | schema:datePublished | 2019-07-24 |
5 | ″ | schema:datePublishedReg | 2019-07-24 |
6 | ″ | schema:description | Nucleic acid kinetic simulators aim to predict the kinetics of interacting nucleic acid strands. Many simulators model the kinetics of interacting nucleic acid strands as continuous-time Markov chains (CTMCs). States of the CTMCs represent a collection of secondary structures, and transitions between the states correspond to the forming or breaking of base pairs and are determined by a nucleic acid kinetic model. The number of states these CTMCs can form may be exponentially large in the length of the strands, making two important tasks challenging, namely, mean first passage time (MFPT) estimation and parameter estimation for kinetic models based on MFPTs. Gillespie’s stochastic simulation algorithm (SSA) is widely used to analyze nucleic acid folding kinetics, but could be computationally expensive for reactions whose CTMC has a large state space or for slow reactions. It could also be expensive for arbitrary parameter sets that occur in parameter estimation. Our work addresses these two challenging tasks, in the full state space of all non-pseudoknotted secondary structures of each reaction. In the first task, we show how to use a reduced variance stochastic simulation algorithm (RVSSA), which is adapted from SSA, to estimate the MFPT of a reaction’s CTMC. In the second task, we estimate model parameters based on MFPTs. To this end, first, we show how to use a generalized method of moments (GMM) approach, where we minimize a squared norm of moment functions that we formulate based on experimental and estimated MFPTs. Second, to speed up parameter estimation, we introduce a fixed path ensemble inference (FPEI) approach, that we adapt from RVSSA. We implement and evaluate RVSSA and FPEI using the Multistrand kinetic simulator. In our experiments on a dataset of DNA reactions, FPEI speeds up parameter estimation compared to inference using SSA, by more than a factor of three for slow reactions. Also, for reactions with large state spaces, it speeds up parameter estimation by more than a factor of two. |
7 | ″ | schema:editor | Na1fefc8e68aa43c7874ea941dbdbf823 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Nb9c39bc9db57485d8e62ab0979d86a4a |
12 | ″ | schema:keywords | DNA reactions |
13 | ″ | ″ | Gillespie's stochastic simulation algorithm |
14 | ″ | ″ | MFPT |
15 | ″ | ″ | Markov chain |
16 | ″ | ″ | Modeled |
17 | ″ | ″ | acid |
18 | ″ | ″ | algorithm |
19 | ″ | ″ | approach |
20 | ″ | ″ | base pairs |
21 | ″ | ″ | breaking |
22 | ″ | ″ | chain |
23 | ″ | ″ | challenging task |
24 | ″ | ″ | collection |
25 | ″ | ″ | continuous-time Markov chain |
26 | ″ | ″ | dataset |
27 | ″ | ″ | efficient parameter estimation |
28 | ″ | ″ | end |
29 | ″ | ″ | estimation |
30 | ″ | ″ | experiments |
31 | ″ | ″ | factors |
32 | ″ | ″ | first task |
33 | ″ | ″ | full state space |
34 | ″ | ″ | function |
35 | ″ | ″ | generalized method |
36 | ″ | ″ | important task |
37 | ″ | ″ | inference |
38 | ″ | ″ | inference approach |
39 | ″ | ″ | kinetic model |
40 | ″ | ″ | kinetic simulator |
41 | ″ | ″ | kinetics |
42 | ″ | ″ | large state space |
43 | ″ | ″ | length |
44 | ″ | ″ | method |
45 | ″ | ″ | model |
46 | ″ | ″ | model parameters |
47 | ″ | ″ | moment approach |
48 | ″ | ″ | moment functions |
49 | ″ | ″ | norms |
50 | ″ | ″ | nucleic acid strands |
51 | ″ | ″ | nucleic acids |
52 | ″ | ″ | number |
53 | ″ | ″ | number of states |
54 | ″ | ″ | pairs |
55 | ″ | ″ | parameter estimation |
56 | ″ | ″ | parameter sets |
57 | ″ | ″ | parameters |
58 | ″ | ″ | reaction |
59 | ″ | ″ | second task |
60 | ″ | ″ | secondary structure |
61 | ″ | ″ | set |
62 | ″ | ″ | simulation algorithm |
63 | ″ | ″ | simulator |
64 | ″ | ″ | slow reaction |
65 | ″ | ″ | space |
66 | ″ | ″ | squared norm |
67 | ″ | ″ | state |
68 | ″ | ″ | state space |
69 | ″ | ″ | stochastic simulation algorithm |
70 | ″ | ″ | strands |
71 | ″ | ″ | structure |
72 | ″ | ″ | task |
73 | ″ | ″ | time Markov chain |
74 | ″ | ″ | time estimation |
75 | ″ | ″ | transition |
76 | ″ | ″ | work |
77 | ″ | schema:name | Efficient Parameter Estimation for DNA Kinetics Modeled as Continuous-Time Markov Chains |
78 | ″ | schema:pagination | 80-99 |
79 | ″ | schema:productId | N11663a59d9e749eaa2f9c5a0a8c07396 |
80 | ″ | ″ | Nd9c0e73f85bf417a9fe88506703d414a |
81 | ″ | schema:publisher | N863c0c3ec5ea46ebaf12711eeed7df19 |
82 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1119950686 |
83 | ″ | ″ | https://doi.org/10.1007/978-3-030-26807-7_5 |
84 | ″ | schema:sdDatePublished | 2022-05-10T10:44 |
85 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
86 | ″ | schema:sdPublisher | N11baa7fe637d487ba27a73df5e8eb346 |
87 | ″ | schema:url | https://doi.org/10.1007/978-3-030-26807-7_5 |
88 | ″ | sgo:license | sg:explorer/license/ |
89 | ″ | sgo:sdDataset | chapters |
90 | ″ | rdf:type | schema:Chapter |
91 | N11663a59d9e749eaa2f9c5a0a8c07396 | schema:name | dimensions_id |
92 | ″ | schema:value | pub.1119950686 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | N11baa7fe637d487ba27a73df5e8eb346 | schema:name | Springer Nature - SN SciGraph project |
95 | ″ | rdf:type | schema:Organization |
96 | N39a07f39c5c24da199deca1b65452a27 | rdf:first | sg:person.01264404447.17 |
97 | ″ | rdf:rest | Ncb8d606afd5d4d968cee0522debfb4d6 |
98 | N3b4ecbc41ec54b7992de5333816a3b51 | rdf:first | Ne245a185a4974795870dbcecf9abb600 |
99 | ″ | rdf:rest | rdf:nil |
100 | N3d05b0200c094d8b9e659500e09d123b | rdf:first | sg:person.01302761701.73 |
101 | ″ | rdf:rest | N39a07f39c5c24da199deca1b65452a27 |
102 | N457412452e324c538782db3648a5ddd0 | rdf:first | sg:person.011515307024.26 |
103 | ″ | rdf:rest | Ne859477d7e0943e2934baadd120a2fe1 |
104 | N863c0c3ec5ea46ebaf12711eeed7df19 | schema:name | Springer Nature |
105 | ″ | rdf:type | schema:Organisation |
106 | Na1fefc8e68aa43c7874ea941dbdbf823 | rdf:first | Nb37c7dc4f8c7480680a07b11f35078e8 |
107 | ″ | rdf:rest | N3b4ecbc41ec54b7992de5333816a3b51 |
108 | Na54000d2e15f4776a3f49e056febd1e6 | rdf:first | sg:person.01214547071.42 |
109 | ″ | rdf:rest | rdf:nil |
110 | Nb37c7dc4f8c7480680a07b11f35078e8 | schema:familyName | Thachuk |
111 | ″ | schema:givenName | Chris |
112 | ″ | rdf:type | schema:Person |
113 | Nb9c39bc9db57485d8e62ab0979d86a4a | schema:isbn | 978-3-030-26806-0 |
114 | ″ | ″ | 978-3-030-26807-7 |
115 | ″ | schema:name | DNA Computing and Molecular Programming |
116 | ″ | rdf:type | schema:Book |
117 | Ncb8d606afd5d4d968cee0522debfb4d6 | rdf:first | sg:person.015300571424.99 |
118 | ″ | rdf:rest | Na54000d2e15f4776a3f49e056febd1e6 |
119 | Nd9c0e73f85bf417a9fe88506703d414a | schema:name | doi |
120 | ″ | schema:value | 10.1007/978-3-030-26807-7_5 |
121 | ″ | rdf:type | schema:PropertyValue |
122 | Ne245a185a4974795870dbcecf9abb600 | schema:familyName | Liu |
123 | ″ | schema:givenName | Yan |
124 | ″ | rdf:type | schema:Person |
125 | Ne859477d7e0943e2934baadd120a2fe1 | rdf:first | sg:person.010040156213.45 |
126 | ″ | rdf:rest | N3d05b0200c094d8b9e659500e09d123b |
127 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
128 | ″ | schema:name | Mathematical Sciences |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | anzsrc-for:0104 | schema:inDefinedTermSet | anzsrc-for: |
131 | ″ | schema:name | Statistics |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | sg:person.010040156213.45 | schema:affiliation | grid-institutes:grid.20861.3d |
134 | ″ | schema:familyName | Dannenberg |
135 | ″ | schema:givenName | Frits |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010040156213.45 |
137 | ″ | rdf:type | schema:Person |
138 | sg:person.011515307024.26 | schema:affiliation | grid-institutes:grid.17091.3e |
139 | ″ | schema:familyName | Zolaktaf |
140 | ″ | schema:givenName | Sedigheh |
141 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011515307024.26 |
142 | ″ | rdf:type | schema:Person |
143 | sg:person.01214547071.42 | schema:affiliation | grid-institutes:grid.17091.3e |
144 | ″ | schema:familyName | Condon |
145 | ″ | schema:givenName | Anne |
146 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214547071.42 |
147 | ″ | rdf:type | schema:Person |
148 | sg:person.01264404447.17 | schema:affiliation | grid-institutes:grid.17091.3e |
149 | ″ | schema:familyName | Bouchard-Côté |
150 | ″ | schema:givenName | Alexandre |
151 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264404447.17 |
152 | ″ | rdf:type | schema:Person |
153 | sg:person.01302761701.73 | schema:affiliation | grid-institutes:grid.20861.3d |
154 | ″ | schema:familyName | Winfree |
155 | ″ | schema:givenName | Erik |
156 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302761701.73 |
157 | ″ | rdf:type | schema:Person |
158 | sg:person.015300571424.99 | schema:affiliation | grid-institutes:grid.17091.3e |
159 | ″ | schema:familyName | Schmidt |
160 | ″ | schema:givenName | Mark |
161 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015300571424.99 |
162 | ″ | rdf:type | schema:Person |
163 | grid-institutes:grid.17091.3e | schema:alternateName | University of British Columbia, Vancouver, BC, Canada |
164 | ″ | schema:name | University of British Columbia, Vancouver, BC, Canada |
165 | ″ | rdf:type | schema:Organization |
166 | grid-institutes:grid.20861.3d | schema:alternateName | California Institute of Technology, Pasadena, CA, USA |
167 | ″ | schema:name | California Institute of Technology, Pasadena, CA, USA |
168 | ″ | rdf:type | schema:Organization |