Efficient Parameter Estimation for DNA Kinetics Modeled as Continuous-Time Markov Chains View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-07-24

AUTHORS

Sedigheh Zolaktaf , Frits Dannenberg , Erik Winfree , Alexandre Bouchard-Côté , Mark Schmidt , Anne Condon

ABSTRACT

Nucleic acid kinetic simulators aim to predict the kinetics of interacting nucleic acid strands. Many simulators model the kinetics of interacting nucleic acid strands as continuous-time Markov chains (CTMCs). States of the CTMCs represent a collection of secondary structures, and transitions between the states correspond to the forming or breaking of base pairs and are determined by a nucleic acid kinetic model. The number of states these CTMCs can form may be exponentially large in the length of the strands, making two important tasks challenging, namely, mean first passage time (MFPT) estimation and parameter estimation for kinetic models based on MFPTs. Gillespie’s stochastic simulation algorithm (SSA) is widely used to analyze nucleic acid folding kinetics, but could be computationally expensive for reactions whose CTMC has a large state space or for slow reactions. It could also be expensive for arbitrary parameter sets that occur in parameter estimation. Our work addresses these two challenging tasks, in the full state space of all non-pseudoknotted secondary structures of each reaction. In the first task, we show how to use a reduced variance stochastic simulation algorithm (RVSSA), which is adapted from SSA, to estimate the MFPT of a reaction’s CTMC. In the second task, we estimate model parameters based on MFPTs. To this end, first, we show how to use a generalized method of moments (GMM) approach, where we minimize a squared norm of moment functions that we formulate based on experimental and estimated MFPTs. Second, to speed up parameter estimation, we introduce a fixed path ensemble inference (FPEI) approach, that we adapt from RVSSA. We implement and evaluate RVSSA and FPEI using the Multistrand kinetic simulator. In our experiments on a dataset of DNA reactions, FPEI speeds up parameter estimation compared to inference using SSA, by more than a factor of three for slow reactions. Also, for reactions with large state spaces, it speeds up parameter estimation by more than a factor of two. More... »

PAGES

80-99

Book

TITLE

DNA Computing and Molecular Programming

ISBN

978-3-030-26806-0
978-3-030-26807-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-26807-7_5

DOI

http://dx.doi.org/10.1007/978-3-030-26807-7_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1119950686


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of British Columbia, Vancouver, BC, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "University of British Columbia, Vancouver, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zolaktaf", 
        "givenName": "Sedigheh", 
        "id": "sg:person.011515307024.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011515307024.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "California Institute of Technology, Pasadena, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "California Institute of Technology, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dannenberg", 
        "givenName": "Frits", 
        "id": "sg:person.010040156213.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010040156213.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "California Institute of Technology, Pasadena, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "California Institute of Technology, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winfree", 
        "givenName": "Erik", 
        "id": "sg:person.01302761701.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302761701.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia, Vancouver, BC, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "University of British Columbia, Vancouver, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bouchard-C\u00f4t\u00e9", 
        "givenName": "Alexandre", 
        "id": "sg:person.01264404447.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264404447.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia, Vancouver, BC, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "University of British Columbia, Vancouver, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Mark", 
        "id": "sg:person.015300571424.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015300571424.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia, Vancouver, BC, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "University of British Columbia, Vancouver, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Condon", 
        "givenName": "Anne", 
        "id": "sg:person.01214547071.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214547071.42"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-07-24", 
    "datePublishedReg": "2019-07-24", 
    "description": "Nucleic acid kinetic simulators aim to predict the kinetics of interacting nucleic acid strands. Many simulators model the kinetics of interacting nucleic acid strands as continuous-time Markov chains (CTMCs). States of the CTMCs represent a collection of secondary structures, and transitions between the states correspond to the forming or breaking of base pairs and are determined by a nucleic acid kinetic model. The number of states these CTMCs can form may be exponentially large in the length of the strands, making two important tasks challenging, namely, mean first passage time (MFPT) estimation and parameter estimation for kinetic models based on MFPTs. Gillespie\u2019s stochastic simulation algorithm (SSA) is widely used to analyze nucleic acid folding kinetics, but could be computationally expensive for reactions whose CTMC has a large state space or for slow reactions. It could also be expensive for arbitrary parameter sets that occur in parameter estimation. Our work addresses these two challenging tasks, in the full state space of all non-pseudoknotted secondary structures of each reaction. In the first task, we show how to use a reduced variance stochastic simulation algorithm (RVSSA), which is adapted from SSA, to estimate the MFPT of a reaction\u2019s CTMC. In the second task, we estimate model parameters based on MFPTs. To this end, first, we show how to use a generalized method of moments (GMM) approach, where we minimize a squared norm of moment functions that we formulate based on experimental and estimated MFPTs. Second, to speed up parameter estimation, we introduce a fixed path ensemble inference (FPEI) approach, that we adapt from RVSSA. We implement and evaluate RVSSA and FPEI using the Multistrand kinetic simulator. In our experiments on a dataset of DNA reactions, FPEI speeds up parameter estimation compared to inference using SSA, by more than a factor of three for slow reactions. Also, for reactions with large state spaces, it speeds up parameter estimation by more than a factor of two.", 
    "editor": [
      {
        "familyName": "Thachuk", 
        "givenName": "Chris", 
        "type": "Person"
      }, 
      {
        "familyName": "Liu", 
        "givenName": "Yan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-26807-7_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-26806-0", 
        "978-3-030-26807-7"
      ], 
      "name": "DNA Computing and Molecular Programming", 
      "type": "Book"
    }, 
    "keywords": [
      "continuous-time Markov chain", 
      "stochastic simulation algorithm", 
      "parameter estimation", 
      "large state space", 
      "state space", 
      "Markov chain", 
      "simulation algorithm", 
      "Gillespie's stochastic simulation algorithm", 
      "efficient parameter estimation", 
      "time Markov chain", 
      "full state space", 
      "kinetic simulator", 
      "moment approach", 
      "model parameters", 
      "squared norm", 
      "number of states", 
      "parameter sets", 
      "inference approach", 
      "MFPT", 
      "generalized method", 
      "estimation", 
      "moment functions", 
      "space", 
      "time estimation", 
      "algorithm", 
      "model", 
      "simulator", 
      "inference", 
      "breaking", 
      "important task", 
      "challenging task", 
      "approach", 
      "kinetic model", 
      "state", 
      "Modeled", 
      "parameters", 
      "structure", 
      "set", 
      "transition", 
      "norms", 
      "chain", 
      "function", 
      "task", 
      "number", 
      "slow reaction", 
      "first task", 
      "pairs", 
      "dataset", 
      "work", 
      "experiments", 
      "length", 
      "second task", 
      "nucleic acid strands", 
      "kinetics", 
      "end", 
      "collection", 
      "DNA reactions", 
      "factors", 
      "strands", 
      "reaction", 
      "secondary structure", 
      "base pairs", 
      "method", 
      "nucleic acids", 
      "acid"
    ], 
    "name": "Efficient Parameter Estimation for DNA Kinetics Modeled as Continuous-Time Markov Chains", 
    "pagination": "80-99", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1119950686"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-26807-7_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-26807-7_5", 
      "https://app.dimensions.ai/details/publication/pub.1119950686"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_262.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-26807-7_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-26807-7_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-26807-7_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-26807-7_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-26807-7_5'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      23 PREDICATES      90 URIs      83 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-26807-7_5 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N457412452e324c538782db3648a5ddd0
4 schema:datePublished 2019-07-24
5 schema:datePublishedReg 2019-07-24
6 schema:description Nucleic acid kinetic simulators aim to predict the kinetics of interacting nucleic acid strands. Many simulators model the kinetics of interacting nucleic acid strands as continuous-time Markov chains (CTMCs). States of the CTMCs represent a collection of secondary structures, and transitions between the states correspond to the forming or breaking of base pairs and are determined by a nucleic acid kinetic model. The number of states these CTMCs can form may be exponentially large in the length of the strands, making two important tasks challenging, namely, mean first passage time (MFPT) estimation and parameter estimation for kinetic models based on MFPTs. Gillespie’s stochastic simulation algorithm (SSA) is widely used to analyze nucleic acid folding kinetics, but could be computationally expensive for reactions whose CTMC has a large state space or for slow reactions. It could also be expensive for arbitrary parameter sets that occur in parameter estimation. Our work addresses these two challenging tasks, in the full state space of all non-pseudoknotted secondary structures of each reaction. In the first task, we show how to use a reduced variance stochastic simulation algorithm (RVSSA), which is adapted from SSA, to estimate the MFPT of a reaction’s CTMC. In the second task, we estimate model parameters based on MFPTs. To this end, first, we show how to use a generalized method of moments (GMM) approach, where we minimize a squared norm of moment functions that we formulate based on experimental and estimated MFPTs. Second, to speed up parameter estimation, we introduce a fixed path ensemble inference (FPEI) approach, that we adapt from RVSSA. We implement and evaluate RVSSA and FPEI using the Multistrand kinetic simulator. In our experiments on a dataset of DNA reactions, FPEI speeds up parameter estimation compared to inference using SSA, by more than a factor of three for slow reactions. Also, for reactions with large state spaces, it speeds up parameter estimation by more than a factor of two.
7 schema:editor Na1fefc8e68aa43c7874ea941dbdbf823
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nb9c39bc9db57485d8e62ab0979d86a4a
12 schema:keywords DNA reactions
13 Gillespie's stochastic simulation algorithm
14 MFPT
15 Markov chain
16 Modeled
17 acid
18 algorithm
19 approach
20 base pairs
21 breaking
22 chain
23 challenging task
24 collection
25 continuous-time Markov chain
26 dataset
27 efficient parameter estimation
28 end
29 estimation
30 experiments
31 factors
32 first task
33 full state space
34 function
35 generalized method
36 important task
37 inference
38 inference approach
39 kinetic model
40 kinetic simulator
41 kinetics
42 large state space
43 length
44 method
45 model
46 model parameters
47 moment approach
48 moment functions
49 norms
50 nucleic acid strands
51 nucleic acids
52 number
53 number of states
54 pairs
55 parameter estimation
56 parameter sets
57 parameters
58 reaction
59 second task
60 secondary structure
61 set
62 simulation algorithm
63 simulator
64 slow reaction
65 space
66 squared norm
67 state
68 state space
69 stochastic simulation algorithm
70 strands
71 structure
72 task
73 time Markov chain
74 time estimation
75 transition
76 work
77 schema:name Efficient Parameter Estimation for DNA Kinetics Modeled as Continuous-Time Markov Chains
78 schema:pagination 80-99
79 schema:productId N11663a59d9e749eaa2f9c5a0a8c07396
80 Nd9c0e73f85bf417a9fe88506703d414a
81 schema:publisher N863c0c3ec5ea46ebaf12711eeed7df19
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1119950686
83 https://doi.org/10.1007/978-3-030-26807-7_5
84 schema:sdDatePublished 2022-05-10T10:44
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N11baa7fe637d487ba27a73df5e8eb346
87 schema:url https://doi.org/10.1007/978-3-030-26807-7_5
88 sgo:license sg:explorer/license/
89 sgo:sdDataset chapters
90 rdf:type schema:Chapter
91 N11663a59d9e749eaa2f9c5a0a8c07396 schema:name dimensions_id
92 schema:value pub.1119950686
93 rdf:type schema:PropertyValue
94 N11baa7fe637d487ba27a73df5e8eb346 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N39a07f39c5c24da199deca1b65452a27 rdf:first sg:person.01264404447.17
97 rdf:rest Ncb8d606afd5d4d968cee0522debfb4d6
98 N3b4ecbc41ec54b7992de5333816a3b51 rdf:first Ne245a185a4974795870dbcecf9abb600
99 rdf:rest rdf:nil
100 N3d05b0200c094d8b9e659500e09d123b rdf:first sg:person.01302761701.73
101 rdf:rest N39a07f39c5c24da199deca1b65452a27
102 N457412452e324c538782db3648a5ddd0 rdf:first sg:person.011515307024.26
103 rdf:rest Ne859477d7e0943e2934baadd120a2fe1
104 N863c0c3ec5ea46ebaf12711eeed7df19 schema:name Springer Nature
105 rdf:type schema:Organisation
106 Na1fefc8e68aa43c7874ea941dbdbf823 rdf:first Nb37c7dc4f8c7480680a07b11f35078e8
107 rdf:rest N3b4ecbc41ec54b7992de5333816a3b51
108 Na54000d2e15f4776a3f49e056febd1e6 rdf:first sg:person.01214547071.42
109 rdf:rest rdf:nil
110 Nb37c7dc4f8c7480680a07b11f35078e8 schema:familyName Thachuk
111 schema:givenName Chris
112 rdf:type schema:Person
113 Nb9c39bc9db57485d8e62ab0979d86a4a schema:isbn 978-3-030-26806-0
114 978-3-030-26807-7
115 schema:name DNA Computing and Molecular Programming
116 rdf:type schema:Book
117 Ncb8d606afd5d4d968cee0522debfb4d6 rdf:first sg:person.015300571424.99
118 rdf:rest Na54000d2e15f4776a3f49e056febd1e6
119 Nd9c0e73f85bf417a9fe88506703d414a schema:name doi
120 schema:value 10.1007/978-3-030-26807-7_5
121 rdf:type schema:PropertyValue
122 Ne245a185a4974795870dbcecf9abb600 schema:familyName Liu
123 schema:givenName Yan
124 rdf:type schema:Person
125 Ne859477d7e0943e2934baadd120a2fe1 rdf:first sg:person.010040156213.45
126 rdf:rest N3d05b0200c094d8b9e659500e09d123b
127 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
128 schema:name Mathematical Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
131 schema:name Statistics
132 rdf:type schema:DefinedTerm
133 sg:person.010040156213.45 schema:affiliation grid-institutes:grid.20861.3d
134 schema:familyName Dannenberg
135 schema:givenName Frits
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010040156213.45
137 rdf:type schema:Person
138 sg:person.011515307024.26 schema:affiliation grid-institutes:grid.17091.3e
139 schema:familyName Zolaktaf
140 schema:givenName Sedigheh
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011515307024.26
142 rdf:type schema:Person
143 sg:person.01214547071.42 schema:affiliation grid-institutes:grid.17091.3e
144 schema:familyName Condon
145 schema:givenName Anne
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214547071.42
147 rdf:type schema:Person
148 sg:person.01264404447.17 schema:affiliation grid-institutes:grid.17091.3e
149 schema:familyName Bouchard-Côté
150 schema:givenName Alexandre
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264404447.17
152 rdf:type schema:Person
153 sg:person.01302761701.73 schema:affiliation grid-institutes:grid.20861.3d
154 schema:familyName Winfree
155 schema:givenName Erik
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302761701.73
157 rdf:type schema:Person
158 sg:person.015300571424.99 schema:affiliation grid-institutes:grid.17091.3e
159 schema:familyName Schmidt
160 schema:givenName Mark
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015300571424.99
162 rdf:type schema:Person
163 grid-institutes:grid.17091.3e schema:alternateName University of British Columbia, Vancouver, BC, Canada
164 schema:name University of British Columbia, Vancouver, BC, Canada
165 rdf:type schema:Organization
166 grid-institutes:grid.20861.3d schema:alternateName California Institute of Technology, Pasadena, CA, USA
167 schema:name California Institute of Technology, Pasadena, CA, USA
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...