A Distribution Control of Weight Vector Set for Multi-objective Evolutionary Algorithms View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-07-24

AUTHORS

Tomoaki Takagi , Keiki Takadama , Hiroyuki Sato

ABSTRACT

For solving multi-objective optimization problems with evolutionary algorithms, the decomposing the Pareto front by using a set of weight vectors is a promising approach. Although an appropriate distribution of weight vectors depends on the Pareto front shape, the uniformly distributed weight vector set is generally employed since the shape is unknown before the search. This work proposes a simple way to control the weight vector distribution appropriate for several Pareto front shapes. The proposed approach changes the distribution of the weight vector set based on the intermediate objective vector in the objective space. A user-defined parameter determines the intermediate objective vector in the static method, and the objective values of the obtained solutions dynamically determine the intermediate objective vector in the dynamic method. In this work, we focus on MOEA/D as a representative decomposition-based multi-objective evolutionary algorithm and apply the proposed static and dynamic methods for it. The experimental results on WFG test problems with different Pareto front shapes show that the proposed static and dynamic methods improve the uniformity of the obtained solutions for several Pareto front shapes and the dynamic method can find an appropriate intermediate objective vector for each Pareto front shape. More... »

PAGES

70-80

Book

TITLE

Bio-inspired Information and Communication Technologies

ISBN

978-3-030-24201-5
978-3-030-24202-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-24202-2_6

DOI

http://dx.doi.org/10.1007/978-3-030-24202-2_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1119773006


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takagi", 
        "givenName": "Tomoaki", 
        "id": "sg:person.015022623513.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022623513.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takadama", 
        "givenName": "Keiki", 
        "id": "sg:person.012774267611.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774267611.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.266298.1", 
          "name": [
            "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sato", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.07750750604.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-07-24", 
    "datePublishedReg": "2019-07-24", 
    "description": "For solving multi-objective optimization problems with evolutionary algorithms, the decomposing the Pareto front by using a set of weight vectors is a promising approach. Although an appropriate distribution of weight vectors depends on the Pareto front shape, the uniformly distributed weight vector set is generally employed since the shape is unknown before the search. This work proposes a simple way to control the weight vector distribution appropriate for several Pareto front shapes. The proposed approach changes the distribution of the weight vector set based on the intermediate objective vector in the objective space. A user-defined parameter determines the intermediate objective vector in the static method, and the objective values of the obtained solutions dynamically determine the intermediate objective vector in the dynamic method. In this work, we focus on MOEA/D as a representative decomposition-based multi-objective evolutionary algorithm and apply the proposed static and dynamic methods for it. The experimental results on WFG test problems with different Pareto front shapes show that the proposed static and dynamic methods improve the uniformity of the obtained solutions for several Pareto front shapes and the dynamic method can find an appropriate intermediate objective vector for each Pareto front shape.", 
    "editor": [
      {
        "familyName": "Compagnoni", 
        "givenName": "Adriana", 
        "type": "Person"
      }, 
      {
        "familyName": "Casey", 
        "givenName": "William", 
        "type": "Person"
      }, 
      {
        "familyName": "Cai", 
        "givenName": "Yang", 
        "type": "Person"
      }, 
      {
        "familyName": "Mishra", 
        "givenName": "Bud", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-24202-2_6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-24201-5", 
        "978-3-030-24202-2"
      ], 
      "name": "Bio-inspired Information and Communication Technologies", 
      "type": "Book"
    }, 
    "keywords": [
      "Pareto front shape", 
      "multi-objective evolutionary algorithm", 
      "evolutionary algorithm", 
      "objective vector", 
      "vector set", 
      "decomposition-based multi-objective evolutionary algorithm", 
      "different Pareto front shapes", 
      "WFG test problems", 
      "user-defined parameters", 
      "multi-objective optimization problem", 
      "weight vector distribution", 
      "weight vector", 
      "MOEA/D", 
      "weight vector set", 
      "objective space", 
      "optimization problem", 
      "Pareto front", 
      "algorithm", 
      "objective value", 
      "experimental results", 
      "test problems", 
      "set", 
      "promising approach", 
      "vector", 
      "simple way", 
      "static method", 
      "method", 
      "solution", 
      "work", 
      "search", 
      "dynamics method", 
      "front shape", 
      "distribution control", 
      "appropriate distribution", 
      "vector distribution", 
      "space", 
      "way", 
      "shape", 
      "results", 
      "parameters", 
      "control", 
      "distribution", 
      "front", 
      "problem", 
      "values", 
      "approach", 
      "uniformity"
    ], 
    "name": "A Distribution Control of Weight Vector Set for Multi-objective Evolutionary Algorithms", 
    "pagination": "70-80", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1119773006"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-24202-2_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-24202-2_6", 
      "https://app.dimensions.ai/details/publication/pub.1119773006"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_151.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-24202-2_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-24202-2_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-24202-2_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-24202-2_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-24202-2_6'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      23 PREDICATES      72 URIs      65 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-24202-2_6 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Ne515c7c8ac17445f8f5c963267da27a6
4 schema:datePublished 2019-07-24
5 schema:datePublishedReg 2019-07-24
6 schema:description For solving multi-objective optimization problems with evolutionary algorithms, the decomposing the Pareto front by using a set of weight vectors is a promising approach. Although an appropriate distribution of weight vectors depends on the Pareto front shape, the uniformly distributed weight vector set is generally employed since the shape is unknown before the search. This work proposes a simple way to control the weight vector distribution appropriate for several Pareto front shapes. The proposed approach changes the distribution of the weight vector set based on the intermediate objective vector in the objective space. A user-defined parameter determines the intermediate objective vector in the static method, and the objective values of the obtained solutions dynamically determine the intermediate objective vector in the dynamic method. In this work, we focus on MOEA/D as a representative decomposition-based multi-objective evolutionary algorithm and apply the proposed static and dynamic methods for it. The experimental results on WFG test problems with different Pareto front shapes show that the proposed static and dynamic methods improve the uniformity of the obtained solutions for several Pareto front shapes and the dynamic method can find an appropriate intermediate objective vector for each Pareto front shape.
7 schema:editor Nfcd3de16383f489f866971cf67b5cd05
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ned22fc02451f43ffa3c5cbfc13d993ff
12 schema:keywords MOEA/D
13 Pareto front
14 Pareto front shape
15 WFG test problems
16 algorithm
17 approach
18 appropriate distribution
19 control
20 decomposition-based multi-objective evolutionary algorithm
21 different Pareto front shapes
22 distribution
23 distribution control
24 dynamics method
25 evolutionary algorithm
26 experimental results
27 front
28 front shape
29 method
30 multi-objective evolutionary algorithm
31 multi-objective optimization problem
32 objective space
33 objective value
34 objective vector
35 optimization problem
36 parameters
37 problem
38 promising approach
39 results
40 search
41 set
42 shape
43 simple way
44 solution
45 space
46 static method
47 test problems
48 uniformity
49 user-defined parameters
50 values
51 vector
52 vector distribution
53 vector set
54 way
55 weight vector
56 weight vector distribution
57 weight vector set
58 work
59 schema:name A Distribution Control of Weight Vector Set for Multi-objective Evolutionary Algorithms
60 schema:pagination 70-80
61 schema:productId N53b527bd35e642baada614a0cf124711
62 N7394eceb8f03496b8edafe58bd653479
63 schema:publisher N71f7b0c2fb944b72af6824fcdb7166bb
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1119773006
65 https://doi.org/10.1007/978-3-030-24202-2_6
66 schema:sdDatePublished 2022-05-10T10:38
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N83045ac53d9f42eb974c257c4fdc43a1
69 schema:url https://doi.org/10.1007/978-3-030-24202-2_6
70 sgo:license sg:explorer/license/
71 sgo:sdDataset chapters
72 rdf:type schema:Chapter
73 N04f8f165d8df4fd3b131cd628ed97b9a schema:familyName Cai
74 schema:givenName Yang
75 rdf:type schema:Person
76 N0623eee470e64be8895163b91da1866d schema:familyName Compagnoni
77 schema:givenName Adriana
78 rdf:type schema:Person
79 N087e306685b84706aeca288425abd324 rdf:first N04f8f165d8df4fd3b131cd628ed97b9a
80 rdf:rest N2d59e4388d3c4f9d806888c0ca9d9b3e
81 N1925a004e61f4b3095f6de281247356d schema:familyName Mishra
82 schema:givenName Bud
83 rdf:type schema:Person
84 N2d59e4388d3c4f9d806888c0ca9d9b3e rdf:first N1925a004e61f4b3095f6de281247356d
85 rdf:rest rdf:nil
86 N4431750536b946698da784ca180a601b rdf:first sg:person.012774267611.99
87 rdf:rest N9bc7792b78784fc094920c74300e4089
88 N53b527bd35e642baada614a0cf124711 schema:name dimensions_id
89 schema:value pub.1119773006
90 rdf:type schema:PropertyValue
91 N71f7b0c2fb944b72af6824fcdb7166bb schema:name Springer Nature
92 rdf:type schema:Organisation
93 N7394eceb8f03496b8edafe58bd653479 schema:name doi
94 schema:value 10.1007/978-3-030-24202-2_6
95 rdf:type schema:PropertyValue
96 N83045ac53d9f42eb974c257c4fdc43a1 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N9bc7792b78784fc094920c74300e4089 rdf:first sg:person.07750750604.05
99 rdf:rest rdf:nil
100 Na9fbccc3a4254470b5f4be94fc138e63 rdf:first Nb951b2fa20714a66b0aca8ea7d510188
101 rdf:rest N087e306685b84706aeca288425abd324
102 Nb951b2fa20714a66b0aca8ea7d510188 schema:familyName Casey
103 schema:givenName William
104 rdf:type schema:Person
105 Ne515c7c8ac17445f8f5c963267da27a6 rdf:first sg:person.015022623513.33
106 rdf:rest N4431750536b946698da784ca180a601b
107 Ned22fc02451f43ffa3c5cbfc13d993ff schema:isbn 978-3-030-24201-5
108 978-3-030-24202-2
109 schema:name Bio-inspired Information and Communication Technologies
110 rdf:type schema:Book
111 Nfcd3de16383f489f866971cf67b5cd05 rdf:first N0623eee470e64be8895163b91da1866d
112 rdf:rest Na9fbccc3a4254470b5f4be94fc138e63
113 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
114 schema:name Mathematical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
117 schema:name Numerical and Computational Mathematics
118 rdf:type schema:DefinedTerm
119 sg:person.012774267611.99 schema:affiliation grid-institutes:grid.266298.1
120 schema:familyName Takadama
121 schema:givenName Keiki
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774267611.99
123 rdf:type schema:Person
124 sg:person.015022623513.33 schema:affiliation grid-institutes:grid.266298.1
125 schema:familyName Takagi
126 schema:givenName Tomoaki
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022623513.33
128 rdf:type schema:Person
129 sg:person.07750750604.05 schema:affiliation grid-institutes:grid.266298.1
130 schema:familyName Sato
131 schema:givenName Hiroyuki
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05
133 rdf:type schema:Person
134 grid-institutes:grid.266298.1 schema:alternateName The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan
135 schema:name The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...