Ontology type: schema:Chapter
2019-07-24
AUTHORSTomoaki Takagi , Keiki Takadama , Hiroyuki Sato
ABSTRACTFor solving multi-objective optimization problems with evolutionary algorithms, the decomposing the Pareto front by using a set of weight vectors is a promising approach. Although an appropriate distribution of weight vectors depends on the Pareto front shape, the uniformly distributed weight vector set is generally employed since the shape is unknown before the search. This work proposes a simple way to control the weight vector distribution appropriate for several Pareto front shapes. The proposed approach changes the distribution of the weight vector set based on the intermediate objective vector in the objective space. A user-defined parameter determines the intermediate objective vector in the static method, and the objective values of the obtained solutions dynamically determine the intermediate objective vector in the dynamic method. In this work, we focus on MOEA/D as a representative decomposition-based multi-objective evolutionary algorithm and apply the proposed static and dynamic methods for it. The experimental results on WFG test problems with different Pareto front shapes show that the proposed static and dynamic methods improve the uniformity of the obtained solutions for several Pareto front shapes and the dynamic method can find an appropriate intermediate objective vector for each Pareto front shape. More... »
PAGES70-80
Bio-inspired Information and Communication Technologies
ISBN
978-3-030-24201-5
978-3-030-24202-2
http://scigraph.springernature.com/pub.10.1007/978-3-030-24202-2_6
DOIhttp://dx.doi.org/10.1007/978-3-030-24202-2_6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1119773006
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.266298.1",
"name": [
"The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Takagi",
"givenName": "Tomoaki",
"id": "sg:person.015022623513.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022623513.33"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.266298.1",
"name": [
"The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Takadama",
"givenName": "Keiki",
"id": "sg:person.012774267611.99",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774267611.99"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.266298.1",
"name": [
"The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Sato",
"givenName": "Hiroyuki",
"id": "sg:person.07750750604.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05"
],
"type": "Person"
}
],
"datePublished": "2019-07-24",
"datePublishedReg": "2019-07-24",
"description": "For solving multi-objective optimization problems with evolutionary algorithms, the decomposing the Pareto front by using a set of weight vectors is a promising approach. Although an appropriate distribution of weight vectors depends on the Pareto front shape, the uniformly distributed weight vector set is generally employed since the shape is unknown before the search. This work proposes a simple way to control the weight vector distribution appropriate for several Pareto front shapes. The proposed approach changes the distribution of the weight vector set based on the intermediate objective vector in the objective space. A user-defined parameter determines the intermediate objective vector in the static method, and the objective values of the obtained solutions dynamically determine the intermediate objective vector in the dynamic method. In this work, we focus on MOEA/D as a representative decomposition-based multi-objective evolutionary algorithm and apply the proposed static and dynamic methods for it. The experimental results on WFG test problems with different Pareto front shapes show that the proposed static and dynamic methods improve the uniformity of the obtained solutions for several Pareto front shapes and the dynamic method can find an appropriate intermediate objective vector for each Pareto front shape.",
"editor": [
{
"familyName": "Compagnoni",
"givenName": "Adriana",
"type": "Person"
},
{
"familyName": "Casey",
"givenName": "William",
"type": "Person"
},
{
"familyName": "Cai",
"givenName": "Yang",
"type": "Person"
},
{
"familyName": "Mishra",
"givenName": "Bud",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-24202-2_6",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-24201-5",
"978-3-030-24202-2"
],
"name": "Bio-inspired Information and Communication Technologies",
"type": "Book"
},
"keywords": [
"Pareto front shape",
"multi-objective evolutionary algorithm",
"evolutionary algorithm",
"objective vector",
"vector set",
"decomposition-based multi-objective evolutionary algorithm",
"different Pareto front shapes",
"WFG test problems",
"user-defined parameters",
"multi-objective optimization problem",
"weight vector distribution",
"weight vector",
"MOEA/D",
"weight vector set",
"objective space",
"optimization problem",
"Pareto front",
"algorithm",
"objective value",
"experimental results",
"test problems",
"set",
"promising approach",
"vector",
"simple way",
"static method",
"method",
"solution",
"work",
"search",
"dynamics method",
"front shape",
"distribution control",
"appropriate distribution",
"vector distribution",
"space",
"way",
"shape",
"results",
"parameters",
"control",
"distribution",
"front",
"problem",
"values",
"approach",
"uniformity"
],
"name": "A Distribution Control of Weight Vector Set for Multi-objective Evolutionary Algorithms",
"pagination": "70-80",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1119773006"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-24202-2_6"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-24202-2_6",
"https://app.dimensions.ai/details/publication/pub.1119773006"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_151.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-24202-2_6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-24202-2_6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-24202-2_6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-24202-2_6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-24202-2_6'
This table displays all metadata directly associated to this object as RDF triples.
136 TRIPLES
23 PREDICATES
72 URIs
65 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-24202-2_6 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0103 |
3 | ″ | schema:author | Ne515c7c8ac17445f8f5c963267da27a6 |
4 | ″ | schema:datePublished | 2019-07-24 |
5 | ″ | schema:datePublishedReg | 2019-07-24 |
6 | ″ | schema:description | For solving multi-objective optimization problems with evolutionary algorithms, the decomposing the Pareto front by using a set of weight vectors is a promising approach. Although an appropriate distribution of weight vectors depends on the Pareto front shape, the uniformly distributed weight vector set is generally employed since the shape is unknown before the search. This work proposes a simple way to control the weight vector distribution appropriate for several Pareto front shapes. The proposed approach changes the distribution of the weight vector set based on the intermediate objective vector in the objective space. A user-defined parameter determines the intermediate objective vector in the static method, and the objective values of the obtained solutions dynamically determine the intermediate objective vector in the dynamic method. In this work, we focus on MOEA/D as a representative decomposition-based multi-objective evolutionary algorithm and apply the proposed static and dynamic methods for it. The experimental results on WFG test problems with different Pareto front shapes show that the proposed static and dynamic methods improve the uniformity of the obtained solutions for several Pareto front shapes and the dynamic method can find an appropriate intermediate objective vector for each Pareto front shape. |
7 | ″ | schema:editor | Nfcd3de16383f489f866971cf67b5cd05 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Ned22fc02451f43ffa3c5cbfc13d993ff |
12 | ″ | schema:keywords | MOEA/D |
13 | ″ | ″ | Pareto front |
14 | ″ | ″ | Pareto front shape |
15 | ″ | ″ | WFG test problems |
16 | ″ | ″ | algorithm |
17 | ″ | ″ | approach |
18 | ″ | ″ | appropriate distribution |
19 | ″ | ″ | control |
20 | ″ | ″ | decomposition-based multi-objective evolutionary algorithm |
21 | ″ | ″ | different Pareto front shapes |
22 | ″ | ″ | distribution |
23 | ″ | ″ | distribution control |
24 | ″ | ″ | dynamics method |
25 | ″ | ″ | evolutionary algorithm |
26 | ″ | ″ | experimental results |
27 | ″ | ″ | front |
28 | ″ | ″ | front shape |
29 | ″ | ″ | method |
30 | ″ | ″ | multi-objective evolutionary algorithm |
31 | ″ | ″ | multi-objective optimization problem |
32 | ″ | ″ | objective space |
33 | ″ | ″ | objective value |
34 | ″ | ″ | objective vector |
35 | ″ | ″ | optimization problem |
36 | ″ | ″ | parameters |
37 | ″ | ″ | problem |
38 | ″ | ″ | promising approach |
39 | ″ | ″ | results |
40 | ″ | ″ | search |
41 | ″ | ″ | set |
42 | ″ | ″ | shape |
43 | ″ | ″ | simple way |
44 | ″ | ″ | solution |
45 | ″ | ″ | space |
46 | ″ | ″ | static method |
47 | ″ | ″ | test problems |
48 | ″ | ″ | uniformity |
49 | ″ | ″ | user-defined parameters |
50 | ″ | ″ | values |
51 | ″ | ″ | vector |
52 | ″ | ″ | vector distribution |
53 | ″ | ″ | vector set |
54 | ″ | ″ | way |
55 | ″ | ″ | weight vector |
56 | ″ | ″ | weight vector distribution |
57 | ″ | ″ | weight vector set |
58 | ″ | ″ | work |
59 | ″ | schema:name | A Distribution Control of Weight Vector Set for Multi-objective Evolutionary Algorithms |
60 | ″ | schema:pagination | 70-80 |
61 | ″ | schema:productId | N53b527bd35e642baada614a0cf124711 |
62 | ″ | ″ | N7394eceb8f03496b8edafe58bd653479 |
63 | ″ | schema:publisher | N71f7b0c2fb944b72af6824fcdb7166bb |
64 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1119773006 |
65 | ″ | ″ | https://doi.org/10.1007/978-3-030-24202-2_6 |
66 | ″ | schema:sdDatePublished | 2022-05-10T10:38 |
67 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
68 | ″ | schema:sdPublisher | N83045ac53d9f42eb974c257c4fdc43a1 |
69 | ″ | schema:url | https://doi.org/10.1007/978-3-030-24202-2_6 |
70 | ″ | sgo:license | sg:explorer/license/ |
71 | ″ | sgo:sdDataset | chapters |
72 | ″ | rdf:type | schema:Chapter |
73 | N04f8f165d8df4fd3b131cd628ed97b9a | schema:familyName | Cai |
74 | ″ | schema:givenName | Yang |
75 | ″ | rdf:type | schema:Person |
76 | N0623eee470e64be8895163b91da1866d | schema:familyName | Compagnoni |
77 | ″ | schema:givenName | Adriana |
78 | ″ | rdf:type | schema:Person |
79 | N087e306685b84706aeca288425abd324 | rdf:first | N04f8f165d8df4fd3b131cd628ed97b9a |
80 | ″ | rdf:rest | N2d59e4388d3c4f9d806888c0ca9d9b3e |
81 | N1925a004e61f4b3095f6de281247356d | schema:familyName | Mishra |
82 | ″ | schema:givenName | Bud |
83 | ″ | rdf:type | schema:Person |
84 | N2d59e4388d3c4f9d806888c0ca9d9b3e | rdf:first | N1925a004e61f4b3095f6de281247356d |
85 | ″ | rdf:rest | rdf:nil |
86 | N4431750536b946698da784ca180a601b | rdf:first | sg:person.012774267611.99 |
87 | ″ | rdf:rest | N9bc7792b78784fc094920c74300e4089 |
88 | N53b527bd35e642baada614a0cf124711 | schema:name | dimensions_id |
89 | ″ | schema:value | pub.1119773006 |
90 | ″ | rdf:type | schema:PropertyValue |
91 | N71f7b0c2fb944b72af6824fcdb7166bb | schema:name | Springer Nature |
92 | ″ | rdf:type | schema:Organisation |
93 | N7394eceb8f03496b8edafe58bd653479 | schema:name | doi |
94 | ″ | schema:value | 10.1007/978-3-030-24202-2_6 |
95 | ″ | rdf:type | schema:PropertyValue |
96 | N83045ac53d9f42eb974c257c4fdc43a1 | schema:name | Springer Nature - SN SciGraph project |
97 | ″ | rdf:type | schema:Organization |
98 | N9bc7792b78784fc094920c74300e4089 | rdf:first | sg:person.07750750604.05 |
99 | ″ | rdf:rest | rdf:nil |
100 | Na9fbccc3a4254470b5f4be94fc138e63 | rdf:first | Nb951b2fa20714a66b0aca8ea7d510188 |
101 | ″ | rdf:rest | N087e306685b84706aeca288425abd324 |
102 | Nb951b2fa20714a66b0aca8ea7d510188 | schema:familyName | Casey |
103 | ″ | schema:givenName | William |
104 | ″ | rdf:type | schema:Person |
105 | Ne515c7c8ac17445f8f5c963267da27a6 | rdf:first | sg:person.015022623513.33 |
106 | ″ | rdf:rest | N4431750536b946698da784ca180a601b |
107 | Ned22fc02451f43ffa3c5cbfc13d993ff | schema:isbn | 978-3-030-24201-5 |
108 | ″ | ″ | 978-3-030-24202-2 |
109 | ″ | schema:name | Bio-inspired Information and Communication Technologies |
110 | ″ | rdf:type | schema:Book |
111 | Nfcd3de16383f489f866971cf67b5cd05 | rdf:first | N0623eee470e64be8895163b91da1866d |
112 | ″ | rdf:rest | Na9fbccc3a4254470b5f4be94fc138e63 |
113 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
114 | ″ | schema:name | Mathematical Sciences |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | anzsrc-for:0103 | schema:inDefinedTermSet | anzsrc-for: |
117 | ″ | schema:name | Numerical and Computational Mathematics |
118 | ″ | rdf:type | schema:DefinedTerm |
119 | sg:person.012774267611.99 | schema:affiliation | grid-institutes:grid.266298.1 |
120 | ″ | schema:familyName | Takadama |
121 | ″ | schema:givenName | Keiki |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774267611.99 |
123 | ″ | rdf:type | schema:Person |
124 | sg:person.015022623513.33 | schema:affiliation | grid-institutes:grid.266298.1 |
125 | ″ | schema:familyName | Takagi |
126 | ″ | schema:givenName | Tomoaki |
127 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022623513.33 |
128 | ″ | rdf:type | schema:Person |
129 | sg:person.07750750604.05 | schema:affiliation | grid-institutes:grid.266298.1 |
130 | ″ | schema:familyName | Sato |
131 | ″ | schema:givenName | Hiroyuki |
132 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750750604.05 |
133 | ″ | rdf:type | schema:Person |
134 | grid-institutes:grid.266298.1 | schema:alternateName | The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan |
135 | ″ | schema:name | The University of Electro-Communications, 1-5-1 Chofugaoka, 182-8585, Chofu, Tokyo, Japan |
136 | ″ | rdf:type | schema:Organization |