Planetary Impact Processes in Porous Materials View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-09-05

AUTHORS

Gareth S. Collins , Kevin R. Housen , Martin Jutzi , Akiko M. Nakamura

ABSTRACT

Porous materials abound in the Solar System. Primordial solids accreted gently from dust into fragile, high-porosity aggregates; many asteroids have been disrupted and reaccreted as loosely bound porous rubble piles; and the crusts of airless, unprotected planetary surfaces are heavily fractured from prolonged bombardment of asteroids and comets. High porosity attenuates shock propagation and localizes shock heating, which has several important implications for the evolution of planetary surfaces. The high porosity of early solids implies that shock heating from collisions may have been sufficient to lithify the compacted material, mobilize fluids, cause crystallographic transformation and even generate significant volumes of melt. Internal porosity in asteroids increases their resistance to collisional disruption and reduces momentum transfer efficiency by virtue of enhanced shock attenuation and reduced particle velocity. This enhances accretional efficiency and lengthens the collisional lifespan of asteroids, but at the same time makes them harder to deflect by kinetic impact. Porosity in the crusts and soils of planetary surfaces has a similar effect on the impact process, reducing the speed and mass of ejecta as well as the ultimate size of the crater. Constraining the influence of subsurface porosity variations on impact crater size is a crucial step in using crater populations to estimate impactor flux, date planetary surfaces and infer subsurface properties. More... »

PAGES

103-136

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-23002-9_4

DOI

http://dx.doi.org/10.1007/978-3-030-23002-9_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1120844145


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College London, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Imperial College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Collins", 
        "givenName": "Gareth S.", 
        "id": "sg:person.0622150470.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622150470.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington, Seattle, WA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "University of Washington, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Housen", 
        "givenName": "Kevin R.", 
        "id": "sg:person.012267544711.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267544711.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Space and Habitability, Physics Institute, University of Bern, Bern, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5734.5", 
          "name": [
            "Center for Space and Habitability, Physics Institute, University of Bern, Bern, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jutzi", 
        "givenName": "Martin", 
        "id": "sg:person.07576151463.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07576151463.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Science, Kobe University, Kobe, Japan", 
          "id": "http://www.grid.ac/institutes/grid.31432.37", 
          "name": [
            "Graduate School of Science, Kobe University, Kobe, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Akiko M.", 
        "id": "sg:person.015760020335.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015760020335.90"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-09-05", 
    "datePublishedReg": "2019-09-05", 
    "description": "Porous materials abound in the Solar System. Primordial solids accreted gently from dust into fragile, high-porosity aggregates; many asteroids have been disrupted and reaccreted as loosely bound porous rubble piles; and the crusts of airless, unprotected planetary surfaces are heavily fractured from prolonged bombardment of asteroids and comets. High porosity attenuates shock propagation and localizes shock heating, which has several important implications for the evolution of planetary surfaces. The high porosity of early solids implies that shock heating from collisions may have been sufficient to lithify the compacted material, mobilize fluids, cause crystallographic transformation and even generate significant volumes of melt. Internal porosity in asteroids increases their resistance to collisional disruption and reduces momentum transfer efficiency by virtue of enhanced shock attenuation and reduced particle velocity. This enhances accretional efficiency and lengthens the collisional lifespan of asteroids, but at the same time makes them harder to deflect by kinetic impact. Porosity in the crusts and soils of planetary surfaces has a similar effect on the impact process, reducing the speed and mass of ejecta as well as the ultimate size of the crater. Constraining the influence of subsurface porosity variations on impact crater size is a crucial step in using crater populations to estimate impactor flux, date planetary surfaces and infer subsurface properties.", 
    "editor": [
      {
        "familyName": "Vogler", 
        "givenName": "Tracy J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Fredenburg", 
        "givenName": "D. Anthony", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-23002-9_4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-23001-2", 
        "978-3-030-23002-9"
      ], 
      "name": "Shock Phenomena in Granular and Porous Materials", 
      "type": "Book"
    }, 
    "keywords": [
      "porous materials", 
      "high porosity", 
      "impact process", 
      "mass of ejecta", 
      "planetary surfaces", 
      "particle velocity", 
      "internal porosity", 
      "high-porosity aggregates", 
      "porosity variation", 
      "porosity", 
      "subsurface properties", 
      "shock attenuation", 
      "transfer efficiency", 
      "shock heating", 
      "prolonged bombardment", 
      "crystallographic transformation", 
      "momentum transfer efficiency", 
      "impact crater size", 
      "surface", 
      "heating", 
      "crater size", 
      "kinetic impact", 
      "materials", 
      "rubble piles", 
      "solids", 
      "significant volume", 
      "efficiency", 
      "solar system", 
      "piles", 
      "velocity", 
      "speed", 
      "airless", 
      "propagation", 
      "process", 
      "ultimate size", 
      "flux", 
      "melt", 
      "size", 
      "bombardment", 
      "same time", 
      "properties", 
      "fluid", 
      "craters", 
      "resistance", 
      "attenuation", 
      "influence", 
      "system", 
      "crucial step", 
      "dust", 
      "aggregates", 
      "asteroids", 
      "soil", 
      "step", 
      "volume", 
      "variation", 
      "collisions", 
      "time", 
      "transformation", 
      "effect", 
      "evolution", 
      "collisional disruption", 
      "mass", 
      "impact", 
      "impactor flux", 
      "crust", 
      "virtue", 
      "ejecta", 
      "lifespan", 
      "similar effects", 
      "early solids", 
      "important implications", 
      "crater population", 
      "comets", 
      "disruption", 
      "implications", 
      "population"
    ], 
    "name": "Planetary Impact Processes in Porous Materials", 
    "pagination": "103-136", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1120844145"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-23002-9_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-23002-9_4", 
      "https://app.dimensions.ai/details/publication/pub.1120844145"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_170.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-23002-9_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-23002-9_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-23002-9_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-23002-9_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-23002-9_4'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      23 PREDICATES      101 URIs      94 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-23002-9_4 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N5616edd778a842958a3484b0aa677e58
4 schema:datePublished 2019-09-05
5 schema:datePublishedReg 2019-09-05
6 schema:description Porous materials abound in the Solar System. Primordial solids accreted gently from dust into fragile, high-porosity aggregates; many asteroids have been disrupted and reaccreted as loosely bound porous rubble piles; and the crusts of airless, unprotected planetary surfaces are heavily fractured from prolonged bombardment of asteroids and comets. High porosity attenuates shock propagation and localizes shock heating, which has several important implications for the evolution of planetary surfaces. The high porosity of early solids implies that shock heating from collisions may have been sufficient to lithify the compacted material, mobilize fluids, cause crystallographic transformation and even generate significant volumes of melt. Internal porosity in asteroids increases their resistance to collisional disruption and reduces momentum transfer efficiency by virtue of enhanced shock attenuation and reduced particle velocity. This enhances accretional efficiency and lengthens the collisional lifespan of asteroids, but at the same time makes them harder to deflect by kinetic impact. Porosity in the crusts and soils of planetary surfaces has a similar effect on the impact process, reducing the speed and mass of ejecta as well as the ultimate size of the crater. Constraining the influence of subsurface porosity variations on impact crater size is a crucial step in using crater populations to estimate impactor flux, date planetary surfaces and infer subsurface properties.
7 schema:editor N432de59db17f4be0965131bf0176ee48
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nf856f6db9ca54f1ba0612d02a57c86cd
12 schema:keywords aggregates
13 airless
14 asteroids
15 attenuation
16 bombardment
17 collisional disruption
18 collisions
19 comets
20 crater population
21 crater size
22 craters
23 crucial step
24 crust
25 crystallographic transformation
26 disruption
27 dust
28 early solids
29 effect
30 efficiency
31 ejecta
32 evolution
33 fluid
34 flux
35 heating
36 high porosity
37 high-porosity aggregates
38 impact
39 impact crater size
40 impact process
41 impactor flux
42 implications
43 important implications
44 influence
45 internal porosity
46 kinetic impact
47 lifespan
48 mass
49 mass of ejecta
50 materials
51 melt
52 momentum transfer efficiency
53 particle velocity
54 piles
55 planetary surfaces
56 population
57 porosity
58 porosity variation
59 porous materials
60 process
61 prolonged bombardment
62 propagation
63 properties
64 resistance
65 rubble piles
66 same time
67 shock attenuation
68 shock heating
69 significant volume
70 similar effects
71 size
72 soil
73 solar system
74 solids
75 speed
76 step
77 subsurface properties
78 surface
79 system
80 time
81 transfer efficiency
82 transformation
83 ultimate size
84 variation
85 velocity
86 virtue
87 volume
88 schema:name Planetary Impact Processes in Porous Materials
89 schema:pagination 103-136
90 schema:productId N02b213073ff7424f968da3d8094e6db9
91 N64ef50fd76dc49a7832efeb1fe4b3dd4
92 schema:publisher N6745cccdf31d4e7393878054c3663e46
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120844145
94 https://doi.org/10.1007/978-3-030-23002-9_4
95 schema:sdDatePublished 2022-05-10T10:40
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher N03331fc7eb58404db2cca39192d63d72
98 schema:url https://doi.org/10.1007/978-3-030-23002-9_4
99 sgo:license sg:explorer/license/
100 sgo:sdDataset chapters
101 rdf:type schema:Chapter
102 N02b213073ff7424f968da3d8094e6db9 schema:name doi
103 schema:value 10.1007/978-3-030-23002-9_4
104 rdf:type schema:PropertyValue
105 N03331fc7eb58404db2cca39192d63d72 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N06d2052094394f5bbe83d0f0e44b2804 rdf:first sg:person.015760020335.90
108 rdf:rest rdf:nil
109 N266404092ddd4c74884deebe0bebd96e rdf:first sg:person.07576151463.05
110 rdf:rest N06d2052094394f5bbe83d0f0e44b2804
111 N32b2216a040a446aa605045ce19ab85c rdf:first Na872b3647ab74ff89bef98d5cfab7f53
112 rdf:rest rdf:nil
113 N3814e033e6d84ac0b52ed94e55dec675 schema:familyName Vogler
114 schema:givenName Tracy J.
115 rdf:type schema:Person
116 N432de59db17f4be0965131bf0176ee48 rdf:first N3814e033e6d84ac0b52ed94e55dec675
117 rdf:rest N32b2216a040a446aa605045ce19ab85c
118 N5616edd778a842958a3484b0aa677e58 rdf:first sg:person.0622150470.26
119 rdf:rest Ne420c45b9f074e5bab6d3af88b294ab0
120 N64ef50fd76dc49a7832efeb1fe4b3dd4 schema:name dimensions_id
121 schema:value pub.1120844145
122 rdf:type schema:PropertyValue
123 N6745cccdf31d4e7393878054c3663e46 schema:name Springer Nature
124 rdf:type schema:Organisation
125 Na872b3647ab74ff89bef98d5cfab7f53 schema:familyName Fredenburg
126 schema:givenName D. Anthony
127 rdf:type schema:Person
128 Ne420c45b9f074e5bab6d3af88b294ab0 rdf:first sg:person.012267544711.57
129 rdf:rest N266404092ddd4c74884deebe0bebd96e
130 Nf856f6db9ca54f1ba0612d02a57c86cd schema:isbn 978-3-030-23001-2
131 978-3-030-23002-9
132 schema:name Shock Phenomena in Granular and Porous Materials
133 rdf:type schema:Book
134 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
135 schema:name Engineering
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
138 schema:name Materials Engineering
139 rdf:type schema:DefinedTerm
140 sg:person.012267544711.57 schema:affiliation grid-institutes:grid.34477.33
141 schema:familyName Housen
142 schema:givenName Kevin R.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267544711.57
144 rdf:type schema:Person
145 sg:person.015760020335.90 schema:affiliation grid-institutes:grid.31432.37
146 schema:familyName Nakamura
147 schema:givenName Akiko M.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015760020335.90
149 rdf:type schema:Person
150 sg:person.0622150470.26 schema:affiliation grid-institutes:grid.7445.2
151 schema:familyName Collins
152 schema:givenName Gareth S.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622150470.26
154 rdf:type schema:Person
155 sg:person.07576151463.05 schema:affiliation grid-institutes:grid.5734.5
156 schema:familyName Jutzi
157 schema:givenName Martin
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07576151463.05
159 rdf:type schema:Person
160 grid-institutes:grid.31432.37 schema:alternateName Graduate School of Science, Kobe University, Kobe, Japan
161 schema:name Graduate School of Science, Kobe University, Kobe, Japan
162 rdf:type schema:Organization
163 grid-institutes:grid.34477.33 schema:alternateName University of Washington, Seattle, WA, USA
164 schema:name University of Washington, Seattle, WA, USA
165 rdf:type schema:Organization
166 grid-institutes:grid.5734.5 schema:alternateName Center for Space and Habitability, Physics Institute, University of Bern, Bern, Switzerland
167 schema:name Center for Space and Habitability, Physics Institute, University of Bern, Bern, Switzerland
168 rdf:type schema:Organization
169 grid-institutes:grid.7445.2 schema:alternateName Imperial College London, London, UK
170 schema:name Imperial College London, London, UK
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...