Ontology type: schema:Chapter
2019-06-22
AUTHORSVladimir Myasnichenko , Nickolay Sdobnyakov , Leoneed Kirilov , Rossen Mikhov , Stefka Fidanova
ABSTRACTIn this paper, we present a method for optimizing of metal nanostructures. The core of the method is a lattice Monte Carlo method with different lattices combined with an approach from molecular dynamics. Interaction between atoms is calculated using multi-body tight-binding model. The method allows solving of problems with periodic boundary conditions. It can be used for modeling of one-dimensional and two-dimensional atomic structures. If periodic boundary conditions are not given, we assume finite dimensions of the model lattice. In addition, automatic relaxation of the crystal lattice can be performed in order to minimize further the potential energy of the system. A computer implementation of the method is developed. It uses the commonly accepted XYZ format for describing atomic structures and passing input parameters. We perform two series of simulations to study the size, composition and temperature dependent surface segregation behaviors and structural atomic instability of Au–Ag nanowires. We found that the most stable mixing configuration of bimetallic nanowires has Ag-rich surface and Au-rich subsurface. More... »
PAGES133-145
Recent Advances in Computational Optimization
ISBN
978-3-030-22722-7
978-3-030-22723-4
http://scigraph.springernature.com/pub.10.1007/978-3-030-22723-4_9
DOIhttp://dx.doi.org/10.1007/978-3-030-22723-4_9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1117402917
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Theoretical and Computational Chemistry",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Tver State University, Tver, Russia",
"id": "http://www.grid.ac/institutes/grid.438242.b",
"name": [
"Tver State University, Tver, Russia"
],
"type": "Organization"
},
"familyName": "Myasnichenko",
"givenName": "Vladimir",
"id": "sg:person.013562762060.25",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562762060.25"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Tver State University, Tver, Russia",
"id": "http://www.grid.ac/institutes/grid.438242.b",
"name": [
"Tver State University, Tver, Russia"
],
"type": "Organization"
},
"familyName": "Sdobnyakov",
"givenName": "Nickolay",
"id": "sg:person.010244167706.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010244167706.80"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.424988.b",
"name": [
"Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Kirilov",
"givenName": "Leoneed",
"id": "sg:person.015700215743.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015700215743.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.424988.b",
"name": [
"Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Mikhov",
"givenName": "Rossen",
"id": "sg:person.014434131110.58",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014434131110.58"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.424988.b",
"name": [
"Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Fidanova",
"givenName": "Stefka",
"id": "sg:person.011173106320.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
],
"type": "Person"
}
],
"datePublished": "2019-06-22",
"datePublishedReg": "2019-06-22",
"description": "In this paper, we present a method for optimizing of metal nanostructures. The core of the method is a lattice Monte Carlo method with different lattices combined with an approach from molecular dynamics. Interaction between atoms is calculated using multi-body tight-binding model. The method allows solving of problems with periodic boundary conditions. It can be used for modeling of one-dimensional and two-dimensional atomic structures. If periodic boundary conditions are not given, we assume finite dimensions of the model lattice. In addition, automatic relaxation of the crystal lattice can be performed in order to minimize further the potential energy of the system. A computer implementation of the method is developed. It uses the commonly accepted XYZ format for describing atomic structures and passing input parameters. We perform two series of simulations to study the size, composition and temperature dependent surface segregation behaviors and structural atomic instability of Au\u2013Ag nanowires. We found that the most stable mixing configuration of bimetallic nanowires has Ag-rich surface and Au-rich subsurface.",
"editor": [
{
"familyName": "Fidanova",
"givenName": "Stefka",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-22723-4_9",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-22722-7",
"978-3-030-22723-4"
],
"name": "Recent Advances in Computational Optimization",
"type": "Book"
},
"keywords": [
"atomic structure",
"two-dimensional atomic structure",
"bimetallic nanowires",
"periodic boundary conditions",
"metal nanostructures",
"binding model",
"Monte Carlo method",
"Monte Carlo simulations",
"surface segregation behavior",
"molecular dynamics",
"Carlo method",
"potential energy",
"nanowires",
"Carlo simulations",
"lattice",
"crystal lattice",
"different lattices",
"model lattice",
"structural instability",
"lattice Monte Carlo method",
"boundary conditions",
"atoms",
"finite dimensions",
"nanostructures",
"segregation behavior",
"energy",
"instability",
"simulations",
"relaxation",
"series of simulations",
"structure",
"Au-Ag",
"dynamics",
"surface",
"gold",
"input parameters",
"configuration",
"core",
"interaction",
"method",
"computer implementation",
"parameters",
"automatic relaxation",
"solving of problems",
"order",
"composition",
"conditions",
"dimensions",
"system",
"size",
"behavior",
"model",
"modeling",
"subsurface",
"series",
"solving",
"problem",
"addition",
"XYZ format",
"approach",
"optimizing",
"paper",
"format",
"implementation"
],
"name": "Structural Instability of Gold and Bimetallic Nanowires Using Monte Carlo Simulation",
"pagination": "133-145",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1117402917"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-22723-4_9"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-22723-4_9",
"https://app.dimensions.ai/details/publication/pub.1117402917"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:50",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_385.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-22723-4_9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-22723-4_9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-22723-4_9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-22723-4_9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-22723-4_9'
This table displays all metadata directly associated to this object as RDF triples.
155 TRIPLES
23 PREDICATES
89 URIs
82 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-22723-4_9 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0307 |
3 | ″ | schema:author | N76d69e44fe1145d6befa8d004bf37877 |
4 | ″ | schema:datePublished | 2019-06-22 |
5 | ″ | schema:datePublishedReg | 2019-06-22 |
6 | ″ | schema:description | In this paper, we present a method for optimizing of metal nanostructures. The core of the method is a lattice Monte Carlo method with different lattices combined with an approach from molecular dynamics. Interaction between atoms is calculated using multi-body tight-binding model. The method allows solving of problems with periodic boundary conditions. It can be used for modeling of one-dimensional and two-dimensional atomic structures. If periodic boundary conditions are not given, we assume finite dimensions of the model lattice. In addition, automatic relaxation of the crystal lattice can be performed in order to minimize further the potential energy of the system. A computer implementation of the method is developed. It uses the commonly accepted XYZ format for describing atomic structures and passing input parameters. We perform two series of simulations to study the size, composition and temperature dependent surface segregation behaviors and structural atomic instability of Au–Ag nanowires. We found that the most stable mixing configuration of bimetallic nanowires has Ag-rich surface and Au-rich subsurface. |
7 | ″ | schema:editor | Nf98a3d760bde42898497d6539d3632c6 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Ncd5ddba09fa8478cb5f3c73e5e6696d6 |
12 | ″ | schema:keywords | Au-Ag |
13 | ″ | ″ | Carlo method |
14 | ″ | ″ | Carlo simulations |
15 | ″ | ″ | Monte Carlo method |
16 | ″ | ″ | Monte Carlo simulations |
17 | ″ | ″ | XYZ format |
18 | ″ | ″ | addition |
19 | ″ | ″ | approach |
20 | ″ | ″ | atomic structure |
21 | ″ | ″ | atoms |
22 | ″ | ″ | automatic relaxation |
23 | ″ | ″ | behavior |
24 | ″ | ″ | bimetallic nanowires |
25 | ″ | ″ | binding model |
26 | ″ | ″ | boundary conditions |
27 | ″ | ″ | composition |
28 | ″ | ″ | computer implementation |
29 | ″ | ″ | conditions |
30 | ″ | ″ | configuration |
31 | ″ | ″ | core |
32 | ″ | ″ | crystal lattice |
33 | ″ | ″ | different lattices |
34 | ″ | ″ | dimensions |
35 | ″ | ″ | dynamics |
36 | ″ | ″ | energy |
37 | ″ | ″ | finite dimensions |
38 | ″ | ″ | format |
39 | ″ | ″ | gold |
40 | ″ | ″ | implementation |
41 | ″ | ″ | input parameters |
42 | ″ | ″ | instability |
43 | ″ | ″ | interaction |
44 | ″ | ″ | lattice |
45 | ″ | ″ | lattice Monte Carlo method |
46 | ″ | ″ | metal nanostructures |
47 | ″ | ″ | method |
48 | ″ | ″ | model |
49 | ″ | ″ | model lattice |
50 | ″ | ″ | modeling |
51 | ″ | ″ | molecular dynamics |
52 | ″ | ″ | nanostructures |
53 | ″ | ″ | nanowires |
54 | ″ | ″ | optimizing |
55 | ″ | ″ | order |
56 | ″ | ″ | paper |
57 | ″ | ″ | parameters |
58 | ″ | ″ | periodic boundary conditions |
59 | ″ | ″ | potential energy |
60 | ″ | ″ | problem |
61 | ″ | ″ | relaxation |
62 | ″ | ″ | segregation behavior |
63 | ″ | ″ | series |
64 | ″ | ″ | series of simulations |
65 | ″ | ″ | simulations |
66 | ″ | ″ | size |
67 | ″ | ″ | solving |
68 | ″ | ″ | solving of problems |
69 | ″ | ″ | structural instability |
70 | ″ | ″ | structure |
71 | ″ | ″ | subsurface |
72 | ″ | ″ | surface |
73 | ″ | ″ | surface segregation behavior |
74 | ″ | ″ | system |
75 | ″ | ″ | two-dimensional atomic structure |
76 | ″ | schema:name | Structural Instability of Gold and Bimetallic Nanowires Using Monte Carlo Simulation |
77 | ″ | schema:pagination | 133-145 |
78 | ″ | schema:productId | N370bbcab582d48cabdfd292b29332b6e |
79 | ″ | ″ | N7d71409a186d428db2818f9d4a664421 |
80 | ″ | schema:publisher | Nc0e09d03f24a4eeaa7dab1af2da66323 |
81 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1117402917 |
82 | ″ | ″ | https://doi.org/10.1007/978-3-030-22723-4_9 |
83 | ″ | schema:sdDatePublished | 2022-05-10T10:50 |
84 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
85 | ″ | schema:sdPublisher | N126f7cede21b47148c5bf90b03ec549a |
86 | ″ | schema:url | https://doi.org/10.1007/978-3-030-22723-4_9 |
87 | ″ | sgo:license | sg:explorer/license/ |
88 | ″ | sgo:sdDataset | chapters |
89 | ″ | rdf:type | schema:Chapter |
90 | N01b59fe21574418ebf235347fbc9a48b | rdf:first | sg:person.014434131110.58 |
91 | ″ | rdf:rest | Nd258e3cb51e84092bf88d27e4d831e64 |
92 | N032914544b7544f2b4345e30aace3aa9 | rdf:first | sg:person.015700215743.52 |
93 | ″ | rdf:rest | N01b59fe21574418ebf235347fbc9a48b |
94 | N126f7cede21b47148c5bf90b03ec549a | schema:name | Springer Nature - SN SciGraph project |
95 | ″ | rdf:type | schema:Organization |
96 | N370bbcab582d48cabdfd292b29332b6e | schema:name | dimensions_id |
97 | ″ | schema:value | pub.1117402917 |
98 | ″ | rdf:type | schema:PropertyValue |
99 | N3b8dcf47358b455793d972bb27f2dd14 | schema:familyName | Fidanova |
100 | ″ | schema:givenName | Stefka |
101 | ″ | rdf:type | schema:Person |
102 | N76d69e44fe1145d6befa8d004bf37877 | rdf:first | sg:person.013562762060.25 |
103 | ″ | rdf:rest | N85950e85557e4e7b9279cb0aec1507c4 |
104 | N7d71409a186d428db2818f9d4a664421 | schema:name | doi |
105 | ″ | schema:value | 10.1007/978-3-030-22723-4_9 |
106 | ″ | rdf:type | schema:PropertyValue |
107 | N85950e85557e4e7b9279cb0aec1507c4 | rdf:first | sg:person.010244167706.80 |
108 | ″ | rdf:rest | N032914544b7544f2b4345e30aace3aa9 |
109 | Nc0e09d03f24a4eeaa7dab1af2da66323 | schema:name | Springer Nature |
110 | ″ | rdf:type | schema:Organisation |
111 | Ncd5ddba09fa8478cb5f3c73e5e6696d6 | schema:isbn | 978-3-030-22722-7 |
112 | ″ | ″ | 978-3-030-22723-4 |
113 | ″ | schema:name | Recent Advances in Computational Optimization |
114 | ″ | rdf:type | schema:Book |
115 | Nd258e3cb51e84092bf88d27e4d831e64 | rdf:first | sg:person.011173106320.18 |
116 | ″ | rdf:rest | rdf:nil |
117 | Nf98a3d760bde42898497d6539d3632c6 | rdf:first | N3b8dcf47358b455793d972bb27f2dd14 |
118 | ″ | rdf:rest | rdf:nil |
119 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
120 | ″ | schema:name | Chemical Sciences |
121 | ″ | rdf:type | schema:DefinedTerm |
122 | anzsrc-for:0307 | schema:inDefinedTermSet | anzsrc-for: |
123 | ″ | schema:name | Theoretical and Computational Chemistry |
124 | ″ | rdf:type | schema:DefinedTerm |
125 | sg:person.010244167706.80 | schema:affiliation | grid-institutes:grid.438242.b |
126 | ″ | schema:familyName | Sdobnyakov |
127 | ″ | schema:givenName | Nickolay |
128 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010244167706.80 |
129 | ″ | rdf:type | schema:Person |
130 | sg:person.011173106320.18 | schema:affiliation | grid-institutes:grid.424988.b |
131 | ″ | schema:familyName | Fidanova |
132 | ″ | schema:givenName | Stefka |
133 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18 |
134 | ″ | rdf:type | schema:Person |
135 | sg:person.013562762060.25 | schema:affiliation | grid-institutes:grid.438242.b |
136 | ″ | schema:familyName | Myasnichenko |
137 | ″ | schema:givenName | Vladimir |
138 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562762060.25 |
139 | ″ | rdf:type | schema:Person |
140 | sg:person.014434131110.58 | schema:affiliation | grid-institutes:grid.424988.b |
141 | ″ | schema:familyName | Mikhov |
142 | ″ | schema:givenName | Rossen |
143 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014434131110.58 |
144 | ″ | rdf:type | schema:Person |
145 | sg:person.015700215743.52 | schema:affiliation | grid-institutes:grid.424988.b |
146 | ″ | schema:familyName | Kirilov |
147 | ″ | schema:givenName | Leoneed |
148 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015700215743.52 |
149 | ″ | rdf:type | schema:Person |
150 | grid-institutes:grid.424988.b | schema:alternateName | Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria |
151 | ″ | schema:name | Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria |
152 | ″ | rdf:type | schema:Organization |
153 | grid-institutes:grid.438242.b | schema:alternateName | Tver State University, Tver, Russia |
154 | ″ | schema:name | Tver State University, Tver, Russia |
155 | ″ | rdf:type | schema:Organization |