Towards Hybrid Multimodal Brain Computer Interface for Robotic Arm Command View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-06-20

AUTHORS

Cristian-Cezar Postelnicu , Florin Girbacia , Gheorghe-Daniel Voinea , Razvan Boboc

ABSTRACT

A hybrid brain-computer interface (BCI) is a system that combines multiple biopotentials or different types of devices with a typical BCI system to enhance the interaction paradigms and various functional parameters. In this paper we present the initial development of a hybrid BCI system based on steady state evoked potentials (SSVEP), eye tracking and hand gestures, used to command a robotic arm for manipulation tasks. The research aims to develop a robust system that will allow users to manipulate objects by means of natural gestures and biopotentials. Two flickering boxes with different frequencies (7.5 Hz and 10 Hz) were used to induce the SSVEP for the selection of target objects, while eight channels were used to record the electroencephalographic (EEG) signals from user’s scalp. Following the selection, the users were able to manipulate the objects from the workspace by using the Leap Motion controller to send commands to a Jaco robotic arm. More... »

PAGES

461-470

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-22419-6_33

DOI

http://dx.doi.org/10.1007/978-3-030-22419-6_33

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1117864294


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Automotive and Transport Engineering, Transilvania University of Bra\u0219ov, Bra\u0219ov, Romania", 
          "id": "http://www.grid.ac/institutes/grid.5120.6", 
          "name": [
            "Department of Automotive and Transport Engineering, Transilvania University of Bra\u0219ov, Bra\u0219ov, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Postelnicu", 
        "givenName": "Cristian-Cezar", 
        "id": "sg:person.012774612241.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774612241.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Automotive and Transport Engineering, Transilvania University of Bra\u0219ov, Bra\u0219ov, Romania", 
          "id": "http://www.grid.ac/institutes/grid.5120.6", 
          "name": [
            "Department of Automotive and Transport Engineering, Transilvania University of Bra\u0219ov, Bra\u0219ov, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Girbacia", 
        "givenName": "Florin", 
        "id": "sg:person.015502545151.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015502545151.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Automotive and Transport Engineering, Transilvania University of Bra\u0219ov, Bra\u0219ov, Romania", 
          "id": "http://www.grid.ac/institutes/grid.5120.6", 
          "name": [
            "Department of Automotive and Transport Engineering, Transilvania University of Bra\u0219ov, Bra\u0219ov, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Voinea", 
        "givenName": "Gheorghe-Daniel", 
        "id": "sg:person.011606222437.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011606222437.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Automotive and Transport Engineering, Transilvania University of Bra\u0219ov, Bra\u0219ov, Romania", 
          "id": "http://www.grid.ac/institutes/grid.5120.6", 
          "name": [
            "Department of Automotive and Transport Engineering, Transilvania University of Bra\u0219ov, Bra\u0219ov, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boboc", 
        "givenName": "Razvan", 
        "id": "sg:person.011106027375.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011106027375.48"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-06-20", 
    "datePublishedReg": "2019-06-20", 
    "description": "A hybrid brain-computer interface (BCI) is a system that combines multiple biopotentials or different types of devices with a typical BCI system to enhance the interaction paradigms and various functional parameters. In this paper we present the initial development of a hybrid BCI system based on steady state evoked potentials (SSVEP), eye tracking and hand gestures, used to command a robotic arm for manipulation tasks. The research aims to develop a robust system that will allow users to manipulate objects by means of natural gestures and biopotentials. Two flickering boxes with different frequencies (7.5\u00a0Hz and 10\u00a0Hz) were used to induce the SSVEP for the selection of target objects, while eight channels were used to record the electroencephalographic (EEG) signals from user\u2019s scalp. Following the selection, the users were able to manipulate the objects from the workspace by using the Leap Motion controller to send commands to a Jaco robotic arm.", 
    "editor": [
      {
        "familyName": "Schmorrow", 
        "givenName": "Dylan D.", 
        "type": "Person"
      }, 
      {
        "familyName": "Fidopiastis", 
        "givenName": "Cali M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-22419-6_33", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-22418-9", 
        "978-3-030-22419-6"
      ], 
      "name": "Augmented Cognition", 
      "type": "Book"
    }, 
    "keywords": [
      "brain-computer interface", 
      "BCI system", 
      "robotic arm", 
      "typical BCI system", 
      "Leap Motion Controller", 
      "hybrid brain-computer interface", 
      "Jaco robotic arm", 
      "interaction paradigm", 
      "hand gestures", 
      "natural gestures", 
      "manipulation tasks", 
      "motion controller", 
      "computer interface", 
      "hybrid BCI system", 
      "arm commands", 
      "user's scalp", 
      "target object", 
      "eye tracking", 
      "robust system", 
      "users", 
      "multimodal brain\u2013computer interface", 
      "gestures", 
      "objects", 
      "command", 
      "electroencephalographic (EEG) signals", 
      "interface", 
      "system", 
      "workspace", 
      "tracking", 
      "task", 
      "paradigm", 
      "selection", 
      "controller", 
      "different types", 
      "SSVEP", 
      "initial development", 
      "devices", 
      "different frequencies", 
      "box", 
      "steady state", 
      "channels", 
      "research", 
      "biopotentials", 
      "signals", 
      "arm", 
      "means", 
      "development", 
      "state", 
      "parameters", 
      "types", 
      "frequency", 
      "potential", 
      "functional parameters", 
      "scalp", 
      "paper"
    ], 
    "name": "Towards Hybrid Multimodal Brain Computer Interface for Robotic Arm Command", 
    "pagination": "461-470", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1117864294"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-22419-6_33"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-22419-6_33", 
      "https://app.dimensions.ai/details/publication/pub.1117864294"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_314.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-22419-6_33"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-22419-6_33'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-22419-6_33'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-22419-6_33'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-22419-6_33'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      23 PREDICATES      80 URIs      73 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-22419-6_33 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc9c7e71138b144c3be8377db6e5fcd40
4 schema:datePublished 2019-06-20
5 schema:datePublishedReg 2019-06-20
6 schema:description A hybrid brain-computer interface (BCI) is a system that combines multiple biopotentials or different types of devices with a typical BCI system to enhance the interaction paradigms and various functional parameters. In this paper we present the initial development of a hybrid BCI system based on steady state evoked potentials (SSVEP), eye tracking and hand gestures, used to command a robotic arm for manipulation tasks. The research aims to develop a robust system that will allow users to manipulate objects by means of natural gestures and biopotentials. Two flickering boxes with different frequencies (7.5 Hz and 10 Hz) were used to induce the SSVEP for the selection of target objects, while eight channels were used to record the electroencephalographic (EEG) signals from user’s scalp. Following the selection, the users were able to manipulate the objects from the workspace by using the Leap Motion controller to send commands to a Jaco robotic arm.
7 schema:editor N3ab315682ecd43cb88a4c2285dd4512f
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N5c5f510896924eb3868d7d80d50ac213
12 schema:keywords BCI system
13 Jaco robotic arm
14 Leap Motion Controller
15 SSVEP
16 arm
17 arm commands
18 biopotentials
19 box
20 brain-computer interface
21 channels
22 command
23 computer interface
24 controller
25 development
26 devices
27 different frequencies
28 different types
29 electroencephalographic (EEG) signals
30 eye tracking
31 frequency
32 functional parameters
33 gestures
34 hand gestures
35 hybrid BCI system
36 hybrid brain-computer interface
37 initial development
38 interaction paradigm
39 interface
40 manipulation tasks
41 means
42 motion controller
43 multimodal brain–computer interface
44 natural gestures
45 objects
46 paper
47 paradigm
48 parameters
49 potential
50 research
51 robotic arm
52 robust system
53 scalp
54 selection
55 signals
56 state
57 steady state
58 system
59 target object
60 task
61 tracking
62 types
63 typical BCI system
64 user's scalp
65 users
66 workspace
67 schema:name Towards Hybrid Multimodal Brain Computer Interface for Robotic Arm Command
68 schema:pagination 461-470
69 schema:productId N5f542945e1f5453cbce5df33749ddfa7
70 Nbfc98950deb1419ab96f2229cf470000
71 schema:publisher Na26c6c36ba2c4c6696e1fd0971660ed8
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117864294
73 https://doi.org/10.1007/978-3-030-22419-6_33
74 schema:sdDatePublished 2022-05-20T07:46
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N29752578fc6044d2b443b32420203b86
77 schema:url https://doi.org/10.1007/978-3-030-22419-6_33
78 sgo:license sg:explorer/license/
79 sgo:sdDataset chapters
80 rdf:type schema:Chapter
81 N29752578fc6044d2b443b32420203b86 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N3ab315682ecd43cb88a4c2285dd4512f rdf:first Nfb8251ebc70046a1a5b2ae6064a26991
84 rdf:rest N9f6588a53050474dae7753199fffa25e
85 N5c5f510896924eb3868d7d80d50ac213 schema:isbn 978-3-030-22418-9
86 978-3-030-22419-6
87 schema:name Augmented Cognition
88 rdf:type schema:Book
89 N5f542945e1f5453cbce5df33749ddfa7 schema:name dimensions_id
90 schema:value pub.1117864294
91 rdf:type schema:PropertyValue
92 N6d81ad61163c47898bf74f7ec9ff5790 rdf:first sg:person.015502545151.91
93 rdf:rest Nbf7d349417a64a6082b3b339cf6c6fb7
94 N86f9a852ff184463a404118759b7fbd9 schema:familyName Fidopiastis
95 schema:givenName Cali M.
96 rdf:type schema:Person
97 N9f6588a53050474dae7753199fffa25e rdf:first N86f9a852ff184463a404118759b7fbd9
98 rdf:rest rdf:nil
99 Na26c6c36ba2c4c6696e1fd0971660ed8 schema:name Springer Nature
100 rdf:type schema:Organisation
101 Nbf7d349417a64a6082b3b339cf6c6fb7 rdf:first sg:person.011606222437.54
102 rdf:rest Nc34dc5b4cbd04e0492bde17fcaee07ef
103 Nbfc98950deb1419ab96f2229cf470000 schema:name doi
104 schema:value 10.1007/978-3-030-22419-6_33
105 rdf:type schema:PropertyValue
106 Nc34dc5b4cbd04e0492bde17fcaee07ef rdf:first sg:person.011106027375.48
107 rdf:rest rdf:nil
108 Nc9c7e71138b144c3be8377db6e5fcd40 rdf:first sg:person.012774612241.44
109 rdf:rest N6d81ad61163c47898bf74f7ec9ff5790
110 Nfb8251ebc70046a1a5b2ae6064a26991 schema:familyName Schmorrow
111 schema:givenName Dylan D.
112 rdf:type schema:Person
113 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
114 schema:name Information and Computing Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
117 schema:name Artificial Intelligence and Image Processing
118 rdf:type schema:DefinedTerm
119 sg:person.011106027375.48 schema:affiliation grid-institutes:grid.5120.6
120 schema:familyName Boboc
121 schema:givenName Razvan
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011106027375.48
123 rdf:type schema:Person
124 sg:person.011606222437.54 schema:affiliation grid-institutes:grid.5120.6
125 schema:familyName Voinea
126 schema:givenName Gheorghe-Daniel
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011606222437.54
128 rdf:type schema:Person
129 sg:person.012774612241.44 schema:affiliation grid-institutes:grid.5120.6
130 schema:familyName Postelnicu
131 schema:givenName Cristian-Cezar
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012774612241.44
133 rdf:type schema:Person
134 sg:person.015502545151.91 schema:affiliation grid-institutes:grid.5120.6
135 schema:familyName Girbacia
136 schema:givenName Florin
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015502545151.91
138 rdf:type schema:Person
139 grid-institutes:grid.5120.6 schema:alternateName Department of Automotive and Transport Engineering, Transilvania University of Brașov, Brașov, Romania
140 schema:name Department of Automotive and Transport Engineering, Transilvania University of Brașov, Brașov, Romania
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...