2019-05-09
AUTHORSZhi-Zhong Chen , Shohei Ueta , Jingyu Li , Lusheng Wang
ABSTRACTGiven a set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{T} = \{T_1, T_2, \ldots , T_m\}$$\end{document} of phylogenetic trees with the same leaf-label set X, we wish to remove some leaves from the trees so that there is a tree T with leaf-label set X displaying all the resulting trees. One objective is to minimize the total number of leaves removed from the trees, while the other is to minimize the maximum number of leaves removed from an input tree. Chauve et al. [6] refer to the problem with the first (respectively, second) objective as AST-LR (respectively, AST-LR-d), and show that both problems are NP-hard. They further present algorithms for the parameterized versions of both problems, but it seems that their algorithm for the parameterized version of AST-LR is flawed [7]. In this paper, we present a new algorithm for the parameterized version of AST-LR and also show that Chauve et al.’s algorithm for the parameterized version of AST-LR-d can be sped up by an exponential factor. We further design heuristic integer-linear programming (ILP for short) models for AST-LR and AST-LR-d. Our experimental results show that the heuristic models can be used to significantly speed up solving the exact models proposed in [7]. More... »
PAGES3-15
Bioinformatics Research and Applications
ISBN
978-3-030-20241-5
978-3-030-20242-2
http://scigraph.springernature.com/pub.10.1007/978-3-030-20242-2_1
DOIhttp://dx.doi.org/10.1007/978-3-030-20242-2_1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1115013345
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Division of Information System Design, Tokyo Denki University, 350-0394, Hatoyama, Saitama, Japan",
"id": "http://www.grid.ac/institutes/grid.412773.4",
"name": [
"Division of Information System Design, Tokyo Denki University, 350-0394, Hatoyama, Saitama, Japan"
],
"type": "Organization"
},
"familyName": "Chen",
"givenName": "Zhi-Zhong",
"id": "sg:person.015654265661.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015654265661.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Division of Information System Design, Tokyo Denki University, 350-0394, Hatoyama, Saitama, Japan",
"id": "http://www.grid.ac/institutes/grid.412773.4",
"name": [
"Division of Information System Design, Tokyo Denki University, 350-0394, Hatoyama, Saitama, Japan"
],
"type": "Organization"
},
"familyName": "Ueta",
"givenName": "Shohei",
"id": "sg:person.011331715107.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331715107.51"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR"
],
"type": "Organization"
},
"familyName": "Li",
"givenName": "Jingyu",
"id": "sg:person.012435754010.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012435754010.54"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Lusheng",
"id": "sg:person.01105113721.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105113721.52"
],
"type": "Person"
}
],
"datePublished": "2019-05-09",
"datePublishedReg": "2019-05-09",
"description": "Given a set \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathcal{T} = \\{T_1, T_2, \\ldots , T_m\\}$$\\end{document} of phylogenetic trees with the same leaf-label set X, we wish to remove some leaves from the trees so that there is a tree T with leaf-label set X displaying all the resulting trees. One objective is to minimize the total number of leaves removed from the trees, while the other is to minimize the maximum number of leaves removed from an input tree. Chauve et al. [6] refer to the problem with the first (respectively, second) objective as AST-LR (respectively, AST-LR-d), and show that both problems are NP-hard. They further present algorithms for the parameterized versions of both problems, but it seems that their algorithm for the parameterized version of AST-LR is flawed\u00a0[7]. In this paper, we present a new algorithm for the parameterized version of AST-LR and also show that Chauve et al.\u2019s algorithm for the parameterized version of AST-LR-d can be sped up by an exponential factor. We further design heuristic integer-linear programming (ILP for short) models for AST-LR and AST-LR-d. Our experimental results show that the heuristic models can be used to significantly speed up solving the exact models proposed in [7].",
"editor": [
{
"familyName": "Cai",
"givenName": "Zhipeng",
"type": "Person"
},
{
"familyName": "Skums",
"givenName": "Pavel",
"type": "Person"
},
{
"familyName": "Li",
"givenName": "Min",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-20242-2_1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-20241-5",
"978-3-030-20242-2"
],
"name": "Bioinformatics Research and Applications",
"type": "Book"
},
"keywords": [
"consensus phylogeny",
"phylogenetic tree",
"leaves",
"leaf removal",
"trees",
"input trees",
"phylogeny",
"total number",
"maximum number",
"number",
"factors",
"tree T",
"chauve",
"removal",
"first objective",
"model",
"set",
"results",
"heuristic model",
"objective",
"version",
"al",
"NPs",
"problem",
"new algorithm",
"algorithm",
"set X",
"integer linear programming model",
"exact model",
"exponential factor",
"programming model",
"paper",
"experimental results"
],
"name": "Computing a Consensus Phylogeny via Leaf Removal",
"pagination": "3-15",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1115013345"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-20242-2_1"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-20242-2_1",
"https://app.dimensions.ai/details/publication/pub.1115013345"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:44",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_245.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-20242-2_1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-20242-2_1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-20242-2_1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-20242-2_1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-20242-2_1'
This table displays all metadata directly associated to this object as RDF triples.
127 TRIPLES
23 PREDICATES
58 URIs
51 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-20242-2_1 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0802 |
3 | ″ | schema:author | Ne845c3cb5ac840348ad8ac3c963067e1 |
4 | ″ | schema:datePublished | 2019-05-09 |
5 | ″ | schema:datePublishedReg | 2019-05-09 |
6 | ″ | schema:description | Given a set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{T} = \{T_1, T_2, \ldots , T_m\}$$\end{document} of phylogenetic trees with the same leaf-label set X, we wish to remove some leaves from the trees so that there is a tree T with leaf-label set X displaying all the resulting trees. One objective is to minimize the total number of leaves removed from the trees, while the other is to minimize the maximum number of leaves removed from an input tree. Chauve et al. [6] refer to the problem with the first (respectively, second) objective as AST-LR (respectively, AST-LR-d), and show that both problems are NP-hard. They further present algorithms for the parameterized versions of both problems, but it seems that their algorithm for the parameterized version of AST-LR is flawed [7]. In this paper, we present a new algorithm for the parameterized version of AST-LR and also show that Chauve et al.’s algorithm for the parameterized version of AST-LR-d can be sped up by an exponential factor. We further design heuristic integer-linear programming (ILP for short) models for AST-LR and AST-LR-d. Our experimental results show that the heuristic models can be used to significantly speed up solving the exact models proposed in [7]. |
7 | ″ | schema:editor | Nc4cb547603c64a96b9009a669dda2991 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N2fae740393a340ce8bb61949e6ba0198 |
12 | ″ | schema:keywords | NPs |
13 | ″ | ″ | al |
14 | ″ | ″ | algorithm |
15 | ″ | ″ | chauve |
16 | ″ | ″ | consensus phylogeny |
17 | ″ | ″ | exact model |
18 | ″ | ″ | experimental results |
19 | ″ | ″ | exponential factor |
20 | ″ | ″ | factors |
21 | ″ | ″ | first objective |
22 | ″ | ″ | heuristic model |
23 | ″ | ″ | input trees |
24 | ″ | ″ | integer linear programming model |
25 | ″ | ″ | leaf removal |
26 | ″ | ″ | leaves |
27 | ″ | ″ | maximum number |
28 | ″ | ″ | model |
29 | ″ | ″ | new algorithm |
30 | ″ | ″ | number |
31 | ″ | ″ | objective |
32 | ″ | ″ | paper |
33 | ″ | ″ | phylogenetic tree |
34 | ″ | ″ | phylogeny |
35 | ″ | ″ | problem |
36 | ″ | ″ | programming model |
37 | ″ | ″ | removal |
38 | ″ | ″ | results |
39 | ″ | ″ | set |
40 | ″ | ″ | set X |
41 | ″ | ″ | total number |
42 | ″ | ″ | tree T |
43 | ″ | ″ | trees |
44 | ″ | ″ | version |
45 | ″ | schema:name | Computing a Consensus Phylogeny via Leaf Removal |
46 | ″ | schema:pagination | 3-15 |
47 | ″ | schema:productId | N685c751757ef48db8b52efabded4fb92 |
48 | ″ | ″ | Nc3519ef03024457dba6b1237a92966c5 |
49 | ″ | schema:publisher | N8d15e038ba0d4aeab6d7fbd38be7d5cf |
50 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1115013345 |
51 | ″ | ″ | https://doi.org/10.1007/978-3-030-20242-2_1 |
52 | ″ | schema:sdDatePublished | 2022-05-20T07:44 |
53 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
54 | ″ | schema:sdPublisher | Nf9271862bbed42ef8f90f940e790b902 |
55 | ″ | schema:url | https://doi.org/10.1007/978-3-030-20242-2_1 |
56 | ″ | sgo:license | sg:explorer/license/ |
57 | ″ | sgo:sdDataset | chapters |
58 | ″ | rdf:type | schema:Chapter |
59 | N2fae740393a340ce8bb61949e6ba0198 | schema:isbn | 978-3-030-20241-5 |
60 | ″ | ″ | 978-3-030-20242-2 |
61 | ″ | schema:name | Bioinformatics Research and Applications |
62 | ″ | rdf:type | schema:Book |
63 | N3156a26641bf4a98ab1d710503bb10fd | schema:familyName | Skums |
64 | ″ | schema:givenName | Pavel |
65 | ″ | rdf:type | schema:Person |
66 | N52d3d05667864ea1a3969b863c75186c | schema:familyName | Li |
67 | ″ | schema:givenName | Min |
68 | ″ | rdf:type | schema:Person |
69 | N685c751757ef48db8b52efabded4fb92 | schema:name | doi |
70 | ″ | schema:value | 10.1007/978-3-030-20242-2_1 |
71 | ″ | rdf:type | schema:PropertyValue |
72 | N7ae16fc9dae6418d92429726a55851e6 | rdf:first | sg:person.011331715107.51 |
73 | ″ | rdf:rest | N8b3cc41e3bbd4159be08f2c28f228b5b |
74 | N8b3cc41e3bbd4159be08f2c28f228b5b | rdf:first | sg:person.012435754010.54 |
75 | ″ | rdf:rest | Nee484c0d1bc74514a8e72cde208ec37e |
76 | N8d15e038ba0d4aeab6d7fbd38be7d5cf | schema:name | Springer Nature |
77 | ″ | rdf:type | schema:Organisation |
78 | Nc3519ef03024457dba6b1237a92966c5 | schema:name | dimensions_id |
79 | ″ | schema:value | pub.1115013345 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | Nc4cb547603c64a96b9009a669dda2991 | rdf:first | Nf4fb6368ac24492eb1adc013aae351a0 |
82 | ″ | rdf:rest | Ne3f9cba0726643bf8fe4b05aaa6dd4e2 |
83 | Nced5e8ffda924dd690d089c41b73ac52 | rdf:first | N52d3d05667864ea1a3969b863c75186c |
84 | ″ | rdf:rest | rdf:nil |
85 | Ne3f9cba0726643bf8fe4b05aaa6dd4e2 | rdf:first | N3156a26641bf4a98ab1d710503bb10fd |
86 | ″ | rdf:rest | Nced5e8ffda924dd690d089c41b73ac52 |
87 | Ne845c3cb5ac840348ad8ac3c963067e1 | rdf:first | sg:person.015654265661.98 |
88 | ″ | rdf:rest | N7ae16fc9dae6418d92429726a55851e6 |
89 | Nee484c0d1bc74514a8e72cde208ec37e | rdf:first | sg:person.01105113721.52 |
90 | ″ | rdf:rest | rdf:nil |
91 | Nf4fb6368ac24492eb1adc013aae351a0 | schema:familyName | Cai |
92 | ″ | schema:givenName | Zhipeng |
93 | ″ | rdf:type | schema:Person |
94 | Nf9271862bbed42ef8f90f940e790b902 | schema:name | Springer Nature - SN SciGraph project |
95 | ″ | rdf:type | schema:Organization |
96 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
97 | ″ | schema:name | Information and Computing Sciences |
98 | ″ | rdf:type | schema:DefinedTerm |
99 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
100 | ″ | schema:name | Computation Theory and Mathematics |
101 | ″ | rdf:type | schema:DefinedTerm |
102 | sg:person.01105113721.52 | schema:affiliation | grid-institutes:None |
103 | ″ | schema:familyName | Wang |
104 | ″ | schema:givenName | Lusheng |
105 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105113721.52 |
106 | ″ | rdf:type | schema:Person |
107 | sg:person.011331715107.51 | schema:affiliation | grid-institutes:grid.412773.4 |
108 | ″ | schema:familyName | Ueta |
109 | ″ | schema:givenName | Shohei |
110 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331715107.51 |
111 | ″ | rdf:type | schema:Person |
112 | sg:person.012435754010.54 | schema:affiliation | grid-institutes:None |
113 | ″ | schema:familyName | Li |
114 | ″ | schema:givenName | Jingyu |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012435754010.54 |
116 | ″ | rdf:type | schema:Person |
117 | sg:person.015654265661.98 | schema:affiliation | grid-institutes:grid.412773.4 |
118 | ″ | schema:familyName | Chen |
119 | ″ | schema:givenName | Zhi-Zhong |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015654265661.98 |
121 | ″ | rdf:type | schema:Person |
122 | grid-institutes:None | schema:alternateName | Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR |
123 | ″ | schema:name | Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR |
124 | ″ | rdf:type | schema:Organization |
125 | grid-institutes:grid.412773.4 | schema:alternateName | Division of Information System Design, Tokyo Denki University, 350-0394, Hatoyama, Saitama, Japan |
126 | ″ | schema:name | Division of Information System Design, Tokyo Denki University, 350-0394, Hatoyama, Saitama, Japan |
127 | ″ | rdf:type | schema:Organization |