Ontology type: schema:Chapter
2019-06-12
AUTHORSNikola Beneš , Luboš Brim , Samuel Pastva , David Šafránek
ABSTRACTFormal verification techniques together with other computer science formal methods have been recently tailored for applications to biological and biomedical systems. In contrast to traditional simulation-based approaches, model Model checking opens an entirely novel way of viewing and analysing the dynamics of such systems. In particular, it can help in system identification and parameter Parameter synthesis, in comparison of models with respect to a priori given desired properties, in robustness analysis of systems, in relating models to experimental data, or in globally analysing the bifurcations of systems behaviour with respect to changes in parameters. In this review, we briefly describe the state-of-the-art methods and techniques employing model Model checking, as one of the most prominent verification techniques, to the analysis of biomedical systems. We demonstrate some of the advantages of using the model Model checking method by presenting a brief account of the technique itself followed by examples of the application of formal methods based on model Model checking to three areas related to the analysis of biomedical systems: verification of biological hypotheses, parameters synthesis, and bifurcation analysis. Finally, we discuss several case studies that show how fruitfully the methods can be utilised within the computational systems biology and biomedicine domain. More... »
PAGES3-35
Automated Reasoning for Systems Biology and Medicine
ISBN
978-3-030-17296-1
978-3-030-17297-8
http://scigraph.springernature.com/pub.10.1007/978-3-030-17297-8_1
DOIhttp://dx.doi.org/10.1007/978-3-030-17297-8_1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1117043758
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computer Software",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Systems Biology Laboratory at Faculty of Informatics, Masaryk University, Botanick\u00e1 68a, 602 00, Brno, Czech Republic",
"id": "http://www.grid.ac/institutes/grid.10267.32",
"name": [
"Systems Biology Laboratory at Faculty of Informatics, Masaryk University, Botanick\u00e1 68a, 602 00, Brno, Czech Republic"
],
"type": "Organization"
},
"familyName": "Bene\u0161",
"givenName": "Nikola",
"id": "sg:person.014465763501.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014465763501.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Systems Biology Laboratory at Faculty of Informatics, Masaryk University, Botanick\u00e1 68a, 602 00, Brno, Czech Republic",
"id": "http://www.grid.ac/institutes/grid.10267.32",
"name": [
"Systems Biology Laboratory at Faculty of Informatics, Masaryk University, Botanick\u00e1 68a, 602 00, Brno, Czech Republic"
],
"type": "Organization"
},
"familyName": "Brim",
"givenName": "Lubo\u0161",
"id": "sg:person.0645117057.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645117057.83"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Systems Biology Laboratory at Faculty of Informatics, Masaryk University, Botanick\u00e1 68a, 602 00, Brno, Czech Republic",
"id": "http://www.grid.ac/institutes/grid.10267.32",
"name": [
"Systems Biology Laboratory at Faculty of Informatics, Masaryk University, Botanick\u00e1 68a, 602 00, Brno, Czech Republic"
],
"type": "Organization"
},
"familyName": "Pastva",
"givenName": "Samuel",
"id": "sg:person.016130263073.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016130263073.10"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Systems Biology Laboratory at Faculty of Informatics, Masaryk University, Botanick\u00e1 68a, 602 00, Brno, Czech Republic",
"id": "http://www.grid.ac/institutes/grid.10267.32",
"name": [
"Systems Biology Laboratory at Faculty of Informatics, Masaryk University, Botanick\u00e1 68a, 602 00, Brno, Czech Republic"
],
"type": "Organization"
},
"familyName": "\u0160afr\u00e1nek",
"givenName": "David",
"id": "sg:person.011410250615.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011410250615.43"
],
"type": "Person"
}
],
"datePublished": "2019-06-12",
"datePublishedReg": "2019-06-12",
"description": "Formal verification techniques together with other computer science formal methods have been recently tailored for applications to biological and biomedical systems. In contrast to traditional simulation-based approaches, model Model checking\u00a0opens an entirely novel way of viewing and analysing the dynamics of such systems. In particular, it can help in system identification and parameter Parameter synthesis, in comparison of models with respect to a\u00a0priori given desired properties, in robustness analysis of systems, in relating models to experimental data, or in globally analysing the bifurcations of systems behaviour with respect to changes in parameters. In this review, we briefly describe the state-of-the-art methods and techniques employing model Model checking, as one of the most prominent verification techniques, to the analysis of biomedical systems. We demonstrate some of the advantages of using the model Model checking\u00a0method by presenting a\u00a0brief account of the technique itself followed by examples of the application of formal methods based on model Model checking\u00a0to three areas related to the analysis of biomedical systems: verification of biological hypotheses, parameters synthesis, and bifurcation analysis. Finally, we discuss several case studies that show how fruitfully the methods can be utilised within the computational systems biology and biomedicine domain.",
"editor": [
{
"familyName": "Li\u00f2",
"givenName": "Pietro",
"type": "Person"
},
{
"familyName": "Zuliani",
"givenName": "Paolo",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-030-17297-8_1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-030-17296-1",
"978-3-030-17297-8"
],
"name": "Automated Reasoning for Systems Biology and Medicine",
"type": "Book"
},
"keywords": [
"formal methods",
"model checking approaches",
"computational systems biology",
"biomedical systems",
"parameter synthesis",
"formal verification",
"verification techniques",
"model checking",
"biomedicine domain",
"art methods",
"simulation-based approach",
"model model",
"system behavior",
"such systems",
"novel way",
"verification",
"system identification",
"systems biology",
"robustness analysis",
"biological hypotheses",
"checking",
"case study",
"system",
"applications",
"technique",
"model",
"method",
"comparison of models",
"bifurcation analysis",
"advantages",
"domain",
"biological systems",
"way",
"example",
"experimental data",
"data",
"analysis",
"respect",
"bifurcation",
"identification",
"state",
"brief account",
"account",
"dynamics",
"parameters",
"area",
"approach",
"behavior",
"comparison",
"properties",
"biology",
"review",
"study",
"contrast",
"changes",
"hypothesis",
"synthesis"
],
"name": "Model Checking Approach to the Analysis of Biological Systems",
"pagination": "3-35",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1117043758"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-030-17297-8_1"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-030-17297-8_1",
"https://app.dimensions.ai/details/publication/pub.1117043758"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:42",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_154.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-030-17297-8_1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-17297-8_1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-17297-8_1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-17297-8_1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-17297-8_1'
This table displays all metadata directly associated to this object as RDF triples.
151 TRIPLES
23 PREDICATES
84 URIs
75 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-030-17297-8_1 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | ″ | anzsrc-for:0802 |
4 | ″ | ″ | anzsrc-for:0803 |
5 | ″ | schema:author | N008fd0824a424573bbdeb613a2d4df3f |
6 | ″ | schema:datePublished | 2019-06-12 |
7 | ″ | schema:datePublishedReg | 2019-06-12 |
8 | ″ | schema:description | Formal verification techniques together with other computer science formal methods have been recently tailored for applications to biological and biomedical systems. In contrast to traditional simulation-based approaches, model Model checking opens an entirely novel way of viewing and analysing the dynamics of such systems. In particular, it can help in system identification and parameter Parameter synthesis, in comparison of models with respect to a priori given desired properties, in robustness analysis of systems, in relating models to experimental data, or in globally analysing the bifurcations of systems behaviour with respect to changes in parameters. In this review, we briefly describe the state-of-the-art methods and techniques employing model Model checking, as one of the most prominent verification techniques, to the analysis of biomedical systems. We demonstrate some of the advantages of using the model Model checking method by presenting a brief account of the technique itself followed by examples of the application of formal methods based on model Model checking to three areas related to the analysis of biomedical systems: verification of biological hypotheses, parameters synthesis, and bifurcation analysis. Finally, we discuss several case studies that show how fruitfully the methods can be utilised within the computational systems biology and biomedicine domain. |
9 | ″ | schema:editor | N62f90c5dbb674870b60c0a8fac9bc6c8 |
10 | ″ | schema:genre | chapter |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | Nf3f5c566ed9940dc85001980f29bafa2 |
14 | ″ | schema:keywords | account |
15 | ″ | ″ | advantages |
16 | ″ | ″ | analysis |
17 | ″ | ″ | applications |
18 | ″ | ″ | approach |
19 | ″ | ″ | area |
20 | ″ | ″ | art methods |
21 | ″ | ″ | behavior |
22 | ″ | ″ | bifurcation |
23 | ″ | ″ | bifurcation analysis |
24 | ″ | ″ | biological hypotheses |
25 | ″ | ″ | biological systems |
26 | ″ | ″ | biology |
27 | ″ | ″ | biomedical systems |
28 | ″ | ″ | biomedicine domain |
29 | ″ | ″ | brief account |
30 | ″ | ″ | case study |
31 | ″ | ″ | changes |
32 | ″ | ″ | checking |
33 | ″ | ″ | comparison |
34 | ″ | ″ | comparison of models |
35 | ″ | ″ | computational systems biology |
36 | ″ | ″ | contrast |
37 | ″ | ″ | data |
38 | ″ | ″ | domain |
39 | ″ | ″ | dynamics |
40 | ″ | ″ | example |
41 | ″ | ″ | experimental data |
42 | ″ | ″ | formal methods |
43 | ″ | ″ | formal verification |
44 | ″ | ″ | hypothesis |
45 | ″ | ″ | identification |
46 | ″ | ″ | method |
47 | ″ | ″ | model |
48 | ″ | ″ | model checking |
49 | ″ | ″ | model checking approaches |
50 | ″ | ″ | model model |
51 | ″ | ″ | novel way |
52 | ″ | ″ | parameter synthesis |
53 | ″ | ″ | parameters |
54 | ″ | ″ | properties |
55 | ″ | ″ | respect |
56 | ″ | ″ | review |
57 | ″ | ″ | robustness analysis |
58 | ″ | ″ | simulation-based approach |
59 | ″ | ″ | state |
60 | ″ | ″ | study |
61 | ″ | ″ | such systems |
62 | ″ | ″ | synthesis |
63 | ″ | ″ | system |
64 | ″ | ″ | system behavior |
65 | ″ | ″ | system identification |
66 | ″ | ″ | systems biology |
67 | ″ | ″ | technique |
68 | ″ | ″ | verification |
69 | ″ | ″ | verification techniques |
70 | ″ | ″ | way |
71 | ″ | schema:name | Model Checking Approach to the Analysis of Biological Systems |
72 | ″ | schema:pagination | 3-35 |
73 | ″ | schema:productId | N36d374f3ca1d476dacd1deda0ab81f82 |
74 | ″ | ″ | N77c6973d31a54301ae145a219492aacf |
75 | ″ | schema:publisher | Ne8dd54603a8f455fa0ada3ac8e55b89e |
76 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1117043758 |
77 | ″ | ″ | https://doi.org/10.1007/978-3-030-17297-8_1 |
78 | ″ | schema:sdDatePublished | 2022-05-20T07:42 |
79 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
80 | ″ | schema:sdPublisher | N1be778fdc058407dae10deffc98b9b1b |
81 | ″ | schema:url | https://doi.org/10.1007/978-3-030-17297-8_1 |
82 | ″ | sgo:license | sg:explorer/license/ |
83 | ″ | sgo:sdDataset | chapters |
84 | ″ | rdf:type | schema:Chapter |
85 | N008fd0824a424573bbdeb613a2d4df3f | rdf:first | sg:person.014465763501.21 |
86 | ″ | rdf:rest | N8ffdb841250947bd95f3573479edf2d5 |
87 | N0b1bdbeda9d54833887ec9b068ca843a | rdf:first | sg:person.016130263073.10 |
88 | ″ | rdf:rest | N1e14453789cf48b1ac00ef6823eddf74 |
89 | N160d279cecf248aea07e55ce917845ff | rdf:first | N561cf9ce67794aee9135672101e504a9 |
90 | ″ | rdf:rest | rdf:nil |
91 | N1be778fdc058407dae10deffc98b9b1b | schema:name | Springer Nature - SN SciGraph project |
92 | ″ | rdf:type | schema:Organization |
93 | N1e14453789cf48b1ac00ef6823eddf74 | rdf:first | sg:person.011410250615.43 |
94 | ″ | rdf:rest | rdf:nil |
95 | N36d374f3ca1d476dacd1deda0ab81f82 | schema:name | doi |
96 | ″ | schema:value | 10.1007/978-3-030-17297-8_1 |
97 | ″ | rdf:type | schema:PropertyValue |
98 | N561cf9ce67794aee9135672101e504a9 | schema:familyName | Zuliani |
99 | ″ | schema:givenName | Paolo |
100 | ″ | rdf:type | schema:Person |
101 | N62f90c5dbb674870b60c0a8fac9bc6c8 | rdf:first | Nf8f3085ef6c5418c9b266efcfdf3cf6a |
102 | ″ | rdf:rest | N160d279cecf248aea07e55ce917845ff |
103 | N77c6973d31a54301ae145a219492aacf | schema:name | dimensions_id |
104 | ″ | schema:value | pub.1117043758 |
105 | ″ | rdf:type | schema:PropertyValue |
106 | N8ffdb841250947bd95f3573479edf2d5 | rdf:first | sg:person.0645117057.83 |
107 | ″ | rdf:rest | N0b1bdbeda9d54833887ec9b068ca843a |
108 | Ne8dd54603a8f455fa0ada3ac8e55b89e | schema:name | Springer Nature |
109 | ″ | rdf:type | schema:Organisation |
110 | Nf3f5c566ed9940dc85001980f29bafa2 | schema:isbn | 978-3-030-17296-1 |
111 | ″ | ″ | 978-3-030-17297-8 |
112 | ″ | schema:name | Automated Reasoning for Systems Biology and Medicine |
113 | ″ | rdf:type | schema:Book |
114 | Nf8f3085ef6c5418c9b266efcfdf3cf6a | schema:familyName | Liò |
115 | ″ | schema:givenName | Pietro |
116 | ″ | rdf:type | schema:Person |
117 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
118 | ″ | schema:name | Information and Computing Sciences |
119 | ″ | rdf:type | schema:DefinedTerm |
120 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
121 | ″ | schema:name | Artificial Intelligence and Image Processing |
122 | ″ | rdf:type | schema:DefinedTerm |
123 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
124 | ″ | schema:name | Computation Theory and Mathematics |
125 | ″ | rdf:type | schema:DefinedTerm |
126 | anzsrc-for:0803 | schema:inDefinedTermSet | anzsrc-for: |
127 | ″ | schema:name | Computer Software |
128 | ″ | rdf:type | schema:DefinedTerm |
129 | sg:person.011410250615.43 | schema:affiliation | grid-institutes:grid.10267.32 |
130 | ″ | schema:familyName | Šafránek |
131 | ″ | schema:givenName | David |
132 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011410250615.43 |
133 | ″ | rdf:type | schema:Person |
134 | sg:person.014465763501.21 | schema:affiliation | grid-institutes:grid.10267.32 |
135 | ″ | schema:familyName | Beneš |
136 | ″ | schema:givenName | Nikola |
137 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014465763501.21 |
138 | ″ | rdf:type | schema:Person |
139 | sg:person.016130263073.10 | schema:affiliation | grid-institutes:grid.10267.32 |
140 | ″ | schema:familyName | Pastva |
141 | ″ | schema:givenName | Samuel |
142 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016130263073.10 |
143 | ″ | rdf:type | schema:Person |
144 | sg:person.0645117057.83 | schema:affiliation | grid-institutes:grid.10267.32 |
145 | ″ | schema:familyName | Brim |
146 | ″ | schema:givenName | Luboš |
147 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645117057.83 |
148 | ″ | rdf:type | schema:Person |
149 | grid-institutes:grid.10267.32 | schema:alternateName | Systems Biology Laboratory at Faculty of Informatics, Masaryk University, Botanická 68a, 602 00, Brno, Czech Republic |
150 | ″ | schema:name | Systems Biology Laboratory at Faculty of Informatics, Masaryk University, Botanická 68a, 602 00, Brno, Czech Republic |
151 | ″ | rdf:type | schema:Organization |