Relations Between Secret Sharing and Secret Image Sharing View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-04-17

AUTHORS

Xuehu Yan , Jinming Li , Yuliang Lu , Lintao Liu , Guozheng Yang , Huixian Chen

ABSTRACT

Secret sharing (SS) for (k, n) threshold generates secret data into n shadows, where any k or more shadows can reconstruct the secret while any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k-1$$\end{document} or less shadows reconstruct nothing of the secret. SS is useful for cloud computing security, block chain security and so on. Since nowadays image covers more information, secret image sharing (SIS) is studied widely. Although most SIS principles are derived from SS and SIS belongs to SS, SIS has its specific features comparing to SS due to image characteristics, such as, pixel value range, region relationship and so on. In this paper, first we discuss the relations between SIS and SS, where differences between them are mainly considered. Then, some typical sharing principles are employed to further indicate the differences and analyze the possible ways to deal with the issues when directly applying SS to SIS. Finally, we perform experiments to verify our analyses. More... »

PAGES

79-93

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-16946-6_7

DOI

http://dx.doi.org/10.1007/978-3-030-16946-6_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113500337


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Xuehu", 
        "id": "sg:person.010467364517.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "32126 Institute, 110000, Shenyang, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "32126 Institute, 110000, Shenyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jinming", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Yuliang", 
        "id": "sg:person.015112370271.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Lintao", 
        "id": "sg:person.013517427271.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517427271.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Guozheng", 
        "id": "sg:person.011516666750.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516666750.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Artillery Air Defense Academy, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Artillery Air Defense Academy, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Huixian", 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-04-17", 
    "datePublishedReg": "2019-04-17", 
    "description": "Secret sharing (SS) for (k,\u00a0n) threshold generates secret data into n shadows, where any k or more shadows can reconstruct the secret while any \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$k-1$$\\end{document} or less shadows reconstruct nothing of the secret. SS is useful for cloud computing security, block chain security and so on. Since nowadays image covers more information, secret image sharing (SIS) is studied widely. Although most SIS principles are derived from SS and SIS belongs to SS, SIS has its specific features comparing to SS due to image characteristics, such as, pixel value range, region relationship and so on. In this paper, first we discuss the relations between SIS and SS, where differences between them are mainly considered. Then, some typical sharing principles are employed to further indicate the differences and analyze the possible ways to deal with the issues when directly applying SS to SIS. Finally, we perform experiments to verify our analyses.", 
    "editor": [
      {
        "familyName": "Yang", 
        "givenName": "Ching-Nung", 
        "type": "Person"
      }, 
      {
        "familyName": "Peng", 
        "givenName": "Sheng-Lung", 
        "type": "Person"
      }, 
      {
        "familyName": "Jain", 
        "givenName": "Lakhmi C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-16946-6_7", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-16945-9", 
        "978-3-030-16946-6"
      ], 
      "name": "Security with Intelligent Computing and Big-data Services", 
      "type": "Book"
    }, 
    "keywords": [
      "secret image sharing", 
      "secret sharing", 
      "image sharing", 
      "block-chain security", 
      "pixel value range", 
      "n shadows", 
      "secret data", 
      "less shadows", 
      "image characteristics", 
      "more shadows", 
      "chain security", 
      "sharing", 
      "region relationships", 
      "security", 
      "secrets", 
      "sharing principle", 
      "more information", 
      "value range", 
      "shadow", 
      "images", 
      "possible ways", 
      "information", 
      "specific features", 
      "features", 
      "issues", 
      "principles", 
      "way", 
      "data", 
      "experiments", 
      "threshold", 
      "characteristics", 
      "analysis", 
      "relation", 
      "relationship", 
      "range", 
      "differences", 
      "paper"
    ], 
    "name": "Relations Between Secret Sharing and Secret Image Sharing", 
    "pagination": "79-93", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113500337"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-16946-6_7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-16946-6_7", 
      "https://app.dimensions.ai/details/publication/pub.1113500337"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_359.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-16946-6_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-16946-6_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-16946-6_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-16946-6_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-16946-6_7'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      22 PREDICATES      61 URIs      54 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-16946-6_7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N73c814e4d2ef452bb9d83b9c8de98ba8
4 schema:datePublished 2019-04-17
5 schema:datePublishedReg 2019-04-17
6 schema:description Secret sharing (SS) for (k, n) threshold generates secret data into n shadows, where any k or more shadows can reconstruct the secret while any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k-1$$\end{document} or less shadows reconstruct nothing of the secret. SS is useful for cloud computing security, block chain security and so on. Since nowadays image covers more information, secret image sharing (SIS) is studied widely. Although most SIS principles are derived from SS and SIS belongs to SS, SIS has its specific features comparing to SS due to image characteristics, such as, pixel value range, region relationship and so on. In this paper, first we discuss the relations between SIS and SS, where differences between them are mainly considered. Then, some typical sharing principles are employed to further indicate the differences and analyze the possible ways to deal with the issues when directly applying SS to SIS. Finally, we perform experiments to verify our analyses.
7 schema:editor N9a24fe04a6d441b591416f7f15930c0b
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nc31184a9aa8448639786ccc702062bc2
11 schema:keywords analysis
12 block-chain security
13 chain security
14 characteristics
15 data
16 differences
17 experiments
18 features
19 image characteristics
20 image sharing
21 images
22 information
23 issues
24 less shadows
25 more information
26 more shadows
27 n shadows
28 paper
29 pixel value range
30 possible ways
31 principles
32 range
33 region relationships
34 relation
35 relationship
36 secret data
37 secret image sharing
38 secret sharing
39 secrets
40 security
41 shadow
42 sharing
43 sharing principle
44 specific features
45 threshold
46 value range
47 way
48 schema:name Relations Between Secret Sharing and Secret Image Sharing
49 schema:pagination 79-93
50 schema:productId N372e55dcc3184afca47a477d4a8648be
51 N3d15a94d66f9427d8ab3166b3960fb2b
52 schema:publisher N7569078e55314f1e9de52ee9aeacf54d
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113500337
54 https://doi.org/10.1007/978-3-030-16946-6_7
55 schema:sdDatePublished 2022-12-01T06:52
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N69ca3e7912124050b135dfc376683a12
58 schema:url https://doi.org/10.1007/978-3-030-16946-6_7
59 sgo:license sg:explorer/license/
60 sgo:sdDataset chapters
61 rdf:type schema:Chapter
62 N372e55dcc3184afca47a477d4a8648be schema:name doi
63 schema:value 10.1007/978-3-030-16946-6_7
64 rdf:type schema:PropertyValue
65 N3d15a94d66f9427d8ab3166b3960fb2b schema:name dimensions_id
66 schema:value pub.1113500337
67 rdf:type schema:PropertyValue
68 N3dccd729496c40799cafd31bd308ba4e schema:familyName Peng
69 schema:givenName Sheng-Lung
70 rdf:type schema:Person
71 N41d4712d9f6749598c51714f0f1b3a24 rdf:first sg:person.011516666750.26
72 rdf:rest N4a59364a91704b6395493996a7a664e5
73 N4a59364a91704b6395493996a7a664e5 rdf:first Ne1b704060d9e48f1b72d7ca5c805dfe8
74 rdf:rest rdf:nil
75 N4a65354575cb47a98b0b4ef2a787acf1 rdf:first sg:person.015112370271.93
76 rdf:rest N6306b67282aa44b48730a15b6b443482
77 N6306b67282aa44b48730a15b6b443482 rdf:first sg:person.013517427271.32
78 rdf:rest N41d4712d9f6749598c51714f0f1b3a24
79 N69ca3e7912124050b135dfc376683a12 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N73c814e4d2ef452bb9d83b9c8de98ba8 rdf:first sg:person.010467364517.31
82 rdf:rest Nb0249dc5574d44b5aa7d0dc2adf233a8
83 N7569078e55314f1e9de52ee9aeacf54d schema:name Springer Nature
84 rdf:type schema:Organisation
85 N98b7bc85da6441bbbb45a2835ed8cc86 schema:familyName Jain
86 schema:givenName Lakhmi C.
87 rdf:type schema:Person
88 N9a24fe04a6d441b591416f7f15930c0b rdf:first Ncbdd0e1934c145e999be658d4ca6ff83
89 rdf:rest Nebec69d2de864dfdaa63ec0a175d5e3c
90 Nb0249dc5574d44b5aa7d0dc2adf233a8 rdf:first Nb12fe2cee5f942ac9f0e8a1575bcf375
91 rdf:rest N4a65354575cb47a98b0b4ef2a787acf1
92 Nb12fe2cee5f942ac9f0e8a1575bcf375 schema:affiliation grid-institutes:None
93 schema:familyName Li
94 schema:givenName Jinming
95 rdf:type schema:Person
96 Nc31184a9aa8448639786ccc702062bc2 schema:isbn 978-3-030-16945-9
97 978-3-030-16946-6
98 schema:name Security with Intelligent Computing and Big-data Services
99 rdf:type schema:Book
100 Ncbdd0e1934c145e999be658d4ca6ff83 schema:familyName Yang
101 schema:givenName Ching-Nung
102 rdf:type schema:Person
103 Ne1b704060d9e48f1b72d7ca5c805dfe8 schema:affiliation grid-institutes:None
104 schema:familyName Chen
105 schema:givenName Huixian
106 rdf:type schema:Person
107 Nebec69d2de864dfdaa63ec0a175d5e3c rdf:first N3dccd729496c40799cafd31bd308ba4e
108 rdf:rest Nf0a4dbb65a524e4283c108523b74e584
109 Nf0a4dbb65a524e4283c108523b74e584 rdf:first N98b7bc85da6441bbbb45a2835ed8cc86
110 rdf:rest rdf:nil
111 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
112 schema:name Information and Computing Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
115 schema:name Artificial Intelligence and Image Processing
116 rdf:type schema:DefinedTerm
117 sg:person.010467364517.31 schema:affiliation grid-institutes:grid.412110.7
118 schema:familyName Yan
119 schema:givenName Xuehu
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31
121 rdf:type schema:Person
122 sg:person.011516666750.26 schema:affiliation grid-institutes:grid.412110.7
123 schema:familyName Yang
124 schema:givenName Guozheng
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516666750.26
126 rdf:type schema:Person
127 sg:person.013517427271.32 schema:affiliation grid-institutes:grid.412110.7
128 schema:familyName Liu
129 schema:givenName Lintao
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517427271.32
131 rdf:type schema:Person
132 sg:person.015112370271.93 schema:affiliation grid-institutes:grid.412110.7
133 schema:familyName Lu
134 schema:givenName Yuliang
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93
136 rdf:type schema:Person
137 grid-institutes:None schema:alternateName 32126 Institute, 110000, Shenyang, China
138 Artillery Air Defense Academy, 230037, Hefei, China
139 schema:name 32126 Institute, 110000, Shenyang, China
140 Artillery Air Defense Academy, 230037, Hefei, China
141 rdf:type schema:Organization
142 grid-institutes:grid.412110.7 schema:alternateName National University of Defense Technology, 230037, Hefei, China
143 schema:name National University of Defense Technology, 230037, Hefei, China
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...