A Lossless Polynomial-Based Secret Image Sharing Scheme Utilizing the Filtering Operation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-04-17

AUTHORS

Lintao Liu , Yuliang Lu , Xuehu Yan , Wanmeng Ding , Qitian Xuan

ABSTRACT

As a basic method, Shamir’s polynomial-based secret sharing (PSS) is utilized to achieve polynomial-based secret image sharing schemes (PSISSs) with other better performances, such as meaningful shares, two-in-one property and et al. Since the modulus of the sharing polynomial must be a prime, e.g., 251 for PSISSs, Shamir’s PSS cannot deal with pixel values more than 250 well. On account of the importance of precise recovery in the image encryption field, there exist several solutions to achieve precise recovery for PSISSs, which have natural drawbacks, such as large computational costs, random shape changes and extra division for sharing. In this paper, we utilize a simple filtering operation to achieve the proposed lossless PSISS, namely LPSISS, without any side effects. We choose 257 rather than 251 as the sharing modulus, and filter sets of shared values to abandon sets with pixel value more than 255. This solution to lossless recovery is simple but effective, which is valuable as a basic technique to achieve better performances. Experimental results are conducted to prove the effectiveness of the proposed scheme. More... »

PAGES

129-139

Book

TITLE

Security with Intelligent Computing and Big-data Services

ISBN

978-3-030-16945-9
978-3-030-16946-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-16946-6_11

DOI

http://dx.doi.org/10.1007/978-3-030-16946-6_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113500274


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Lintao", 
        "id": "sg:person.013517427271.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517427271.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Yuliang", 
        "id": "sg:person.015112370271.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Xuehu", 
        "id": "sg:person.010467364517.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Wanmeng", 
        "id": "sg:person.010577640471.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010577640471.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xuan", 
        "givenName": "Qitian", 
        "id": "sg:person.016041541715.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016041541715.64"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-04-17", 
    "datePublishedReg": "2019-04-17", 
    "description": "As a basic method, Shamir\u2019s polynomial-based secret sharing (PSS) is utilized to achieve polynomial-based secret image sharing schemes (PSISSs) with other better performances, such as meaningful shares, two-in-one property and et al. Since the modulus of the sharing polynomial must be a prime, e.g., 251 for PSISSs, Shamir\u2019s PSS cannot deal with pixel values more than 250 well. On account of the importance of precise recovery in the image encryption field, there exist several solutions to achieve precise recovery for PSISSs, which have natural drawbacks, such as large computational costs, random shape changes and extra division for sharing. In this paper, we utilize a simple filtering operation to achieve the proposed lossless PSISS, namely LPSISS, without any side effects. We choose 257 rather than 251 as the sharing modulus, and filter sets of shared values to abandon sets with pixel value more than 255. This solution to lossless recovery is simple but effective, which is valuable as a basic technique to achieve better performances. Experimental results are conducted to prove the effectiveness of the proposed scheme.", 
    "editor": [
      {
        "familyName": "Yang", 
        "givenName": "Ching-Nung", 
        "type": "Person"
      }, 
      {
        "familyName": "Peng", 
        "givenName": "Sheng-Lung", 
        "type": "Person"
      }, 
      {
        "familyName": "Jain", 
        "givenName": "Lakhmi C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-16946-6_11", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-16945-9", 
        "978-3-030-16946-6"
      ], 
      "name": "Security with Intelligent Computing and Big-data Services", 
      "type": "Book"
    }, 
    "keywords": [
      "secret image sharing scheme", 
      "image sharing scheme", 
      "filtering operation", 
      "sharing scheme", 
      "image encryption field", 
      "natural drawbacks", 
      "large computational cost", 
      "pixel values", 
      "better performance", 
      "simple filtering operation", 
      "precise recovery", 
      "meaningful shares", 
      "modulus", 
      "lossless recovery", 
      "computational cost", 
      "secret sharing", 
      "experimental results", 
      "encryption field", 
      "polynomials", 
      "operation", 
      "basic methods", 
      "scheme", 
      "performance", 
      "basic techniques", 
      "filter sets", 
      "solution", 
      "shape changes", 
      "et al", 
      "set", 
      "sharing", 
      "properties", 
      "recovery", 
      "drawbacks", 
      "values", 
      "cost", 
      "field", 
      "technique", 
      "al", 
      "method", 
      "effectiveness", 
      "account", 
      "results", 
      "effect", 
      "share", 
      "changes", 
      "importance", 
      "extra divisions", 
      "division", 
      "side effects", 
      "paper"
    ], 
    "name": "A Lossless Polynomial-Based Secret Image Sharing Scheme Utilizing the Filtering Operation", 
    "pagination": "129-139", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113500274"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-16946-6_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-16946-6_11", 
      "https://app.dimensions.ai/details/publication/pub.1113500274"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_152.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-16946-6_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-16946-6_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-16946-6_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-16946-6_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-16946-6_11'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      22 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-16946-6_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne0af199ee14349a593bf970be4c340b3
4 schema:datePublished 2019-04-17
5 schema:datePublishedReg 2019-04-17
6 schema:description As a basic method, Shamir’s polynomial-based secret sharing (PSS) is utilized to achieve polynomial-based secret image sharing schemes (PSISSs) with other better performances, such as meaningful shares, two-in-one property and et al. Since the modulus of the sharing polynomial must be a prime, e.g., 251 for PSISSs, Shamir’s PSS cannot deal with pixel values more than 250 well. On account of the importance of precise recovery in the image encryption field, there exist several solutions to achieve precise recovery for PSISSs, which have natural drawbacks, such as large computational costs, random shape changes and extra division for sharing. In this paper, we utilize a simple filtering operation to achieve the proposed lossless PSISS, namely LPSISS, without any side effects. We choose 257 rather than 251 as the sharing modulus, and filter sets of shared values to abandon sets with pixel value more than 255. This solution to lossless recovery is simple but effective, which is valuable as a basic technique to achieve better performances. Experimental results are conducted to prove the effectiveness of the proposed scheme.
7 schema:editor Nb0c68a86312f44f8bad02e826a776a51
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N308a473e5dbf4547bd819652e2e0fffc
11 schema:keywords account
12 al
13 basic methods
14 basic techniques
15 better performance
16 changes
17 computational cost
18 cost
19 division
20 drawbacks
21 effect
22 effectiveness
23 encryption field
24 et al
25 experimental results
26 extra divisions
27 field
28 filter sets
29 filtering operation
30 image encryption field
31 image sharing scheme
32 importance
33 large computational cost
34 lossless recovery
35 meaningful shares
36 method
37 modulus
38 natural drawbacks
39 operation
40 paper
41 performance
42 pixel values
43 polynomials
44 precise recovery
45 properties
46 recovery
47 results
48 scheme
49 secret image sharing scheme
50 secret sharing
51 set
52 shape changes
53 share
54 sharing
55 sharing scheme
56 side effects
57 simple filtering operation
58 solution
59 technique
60 values
61 schema:name A Lossless Polynomial-Based Secret Image Sharing Scheme Utilizing the Filtering Operation
62 schema:pagination 129-139
63 schema:productId N2ccc5deb80f542098c960abd6f328d68
64 N730ab17acf9c4be99016ea3050619df0
65 schema:publisher N9e73b78743a6429ca154ae09e7e31e63
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113500274
67 https://doi.org/10.1007/978-3-030-16946-6_11
68 schema:sdDatePublished 2022-12-01T06:47
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N682df2b6878148fabe6311f8d73c00df
71 schema:url https://doi.org/10.1007/978-3-030-16946-6_11
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N23171efaac774a8790a8ba35499cc6cb schema:familyName Peng
76 schema:givenName Sheng-Lung
77 rdf:type schema:Person
78 N2ccc5deb80f542098c960abd6f328d68 schema:name dimensions_id
79 schema:value pub.1113500274
80 rdf:type schema:PropertyValue
81 N308a473e5dbf4547bd819652e2e0fffc schema:isbn 978-3-030-16945-9
82 978-3-030-16946-6
83 schema:name Security with Intelligent Computing and Big-data Services
84 rdf:type schema:Book
85 N64083f620654430bb83ab12aa3524e9b rdf:first sg:person.010577640471.37
86 rdf:rest N90f8abb0ec1d44ab94c0005b7dd39d31
87 N682df2b6878148fabe6311f8d73c00df schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N730ab17acf9c4be99016ea3050619df0 schema:name doi
90 schema:value 10.1007/978-3-030-16946-6_11
91 rdf:type schema:PropertyValue
92 N90f8abb0ec1d44ab94c0005b7dd39d31 rdf:first sg:person.016041541715.64
93 rdf:rest rdf:nil
94 N9e73b78743a6429ca154ae09e7e31e63 schema:name Springer Nature
95 rdf:type schema:Organisation
96 Na5fa924c85744d33b1463bff99bddc3e schema:familyName Jain
97 schema:givenName Lakhmi C.
98 rdf:type schema:Person
99 Naf0fb0781689497da4fbcc39470ce5b4 schema:familyName Yang
100 schema:givenName Ching-Nung
101 rdf:type schema:Person
102 Nb0c68a86312f44f8bad02e826a776a51 rdf:first Naf0fb0781689497da4fbcc39470ce5b4
103 rdf:rest Nfc5f48339d7a4301aaa8b1178fa49048
104 Nbb60853fdf3942ad9a50851a417bf27a rdf:first sg:person.015112370271.93
105 rdf:rest Nef15a2c0089c44a0a328fb09f8740576
106 Ne0af199ee14349a593bf970be4c340b3 rdf:first sg:person.013517427271.32
107 rdf:rest Nbb60853fdf3942ad9a50851a417bf27a
108 Nea4dfb315ee24ebdab2b86878ee493b8 rdf:first Na5fa924c85744d33b1463bff99bddc3e
109 rdf:rest rdf:nil
110 Nef15a2c0089c44a0a328fb09f8740576 rdf:first sg:person.010467364517.31
111 rdf:rest N64083f620654430bb83ab12aa3524e9b
112 Nfc5f48339d7a4301aaa8b1178fa49048 rdf:first N23171efaac774a8790a8ba35499cc6cb
113 rdf:rest Nea4dfb315ee24ebdab2b86878ee493b8
114 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
115 schema:name Information and Computing Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
118 schema:name Artificial Intelligence and Image Processing
119 rdf:type schema:DefinedTerm
120 sg:person.010467364517.31 schema:affiliation grid-institutes:grid.412110.7
121 schema:familyName Yan
122 schema:givenName Xuehu
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31
124 rdf:type schema:Person
125 sg:person.010577640471.37 schema:affiliation grid-institutes:grid.412110.7
126 schema:familyName Ding
127 schema:givenName Wanmeng
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010577640471.37
129 rdf:type schema:Person
130 sg:person.013517427271.32 schema:affiliation grid-institutes:grid.412110.7
131 schema:familyName Liu
132 schema:givenName Lintao
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517427271.32
134 rdf:type schema:Person
135 sg:person.015112370271.93 schema:affiliation grid-institutes:grid.412110.7
136 schema:familyName Lu
137 schema:givenName Yuliang
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93
139 rdf:type schema:Person
140 sg:person.016041541715.64 schema:affiliation grid-institutes:grid.412110.7
141 schema:familyName Xuan
142 schema:givenName Qitian
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016041541715.64
144 rdf:type schema:Person
145 grid-institutes:grid.412110.7 schema:alternateName National University of Defense Technology, Hefei, Anhui, China
146 schema:name National University of Defense Technology, Hefei, Anhui, China
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...